×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

  • Study on Moment Redistribution in Statically Indeterminate Corroded Reinforced Concrete Beams

    This article investigates the moment redistribution behavior in corroded reinforced concrete (RC) beams. previous studies by different authors are reviewed, which shed light on the behavior of corroded statically indeterminate RC elements. The corrosion effects on the ultimate strength, deflection, and moment redistribution ratios are examined. The application of axial loads and location and severity of corrosion allowed for a comprehensive discussion of the moment redistribution behavior. The results showed that continuous RC beams with corroded reinforcement behave differently than simply supported RC beams. The corrosion process also affected the moment redistribution, providing additional safety to the RC structures. Existing research in this area is limited, and further investigations are required to address this knowledge gap and improve the understanding of the mechanism of moment redistribution in continuous corroded RC beams.

    Keywords: corroded RC beams, statically indeterminate RC beams, moment redistribution, corrosion, accelerated corrosion method, ultimate strength, deflection, structures durability

  • Analytical model of the method of variable elasticity parameters for flange beam to column connections

    The article is devoted to the study of flange beam to column connections to analyze their nonlinear behavior. In the course of the study, a simplified analytical model was created using the method of variable elasticity parameters to determine the stress-strain state of these connections. The proposed mechanical model makes it possible to predict the strength, stiffness, ductility of joints, as well as possible types of fracture and deformation mechanisms of the bent elements of flange joints. This model can be useful for engineers and specialists in the field of design and analysis of civil structures. The proposed refined component model is an analogue of the Eurocode 3 model. The paper presents a numerical experiment on modeling the junction of a beam with a column by the finite element method. A comparative analysis of the results obtained with the results of tests of flange connections of steel building structures performed by the University of Sydney (USYD) is presented.

    Keywords: flange connections, flange plate, stress-strain state, method of variable elasticity parameters, component method, refined component model, finite element method, elastic-plastic state, plastic hinge, modified stiffness, bending model of flange plate

  • Numerical experiments to investigate the relationship between Poisson's ratio and cohesion

    This study is a pilot one. The purpose of the study is to identify the nature of the relationship between Poisson's ratio and cohesion, on the example of a soil mass. The main objective of the study is to identify the dependence of Poisson's ratio and cohesion coefficient to obtain the fracture limit of the material (in this study of soil massif) - plastic flows in the material. The study is conducted by methods of mathematical modeling. In order to achieve the objective, it is necessary to justify the possibility of performing this experiment by means of boundary value problem, and to perform the ranking of the number of numerical experiments by experiment planning method to obtain the extrema. Next, it is necessary to perform the numerical experiment itself to reveal the relationship between Poisson's ratio and cohesion. The obtained data will be used to compose the inverse problem when testing a new Russian software product in the field of geotechnical and geomechanical modeling.

    Keywords: Poisson's ratio, cohesion, soil massif, numerical experiment, finite element method, mathematical modelling, plastic flow, deformation, stress

  • The effect of cross-shaped bonds on the condition of cylindrical mesh shells

    The influence of the location of reinforcing bonds on the general condition of cylindrical mesh shells is investigated. Cruciform core elements made of tubular profiles were used as reinforcing structures. The number of reinforcing elements is 8 (4 on each panel). Opposite nodes of adjacent faces are connected by cross-shaped elements in the direction of the arc. The expediency of placing reinforcement elements inside each of the two middle panels and at a distance of one panel from the middle of the length is checked. As a result of the conducted studies, the regularities of the stress-strain state and dangerous areas of the shell were determined. When using cruciform joints, a decrease in the forces in the elements and a decrease in the movements of the nodes were revealed. A redistribution of internal force factors and a decrease in the number of typical sizes of elements were recorded. A rational scheme of reinforcement of the structure is obtained.

    Keywords: cylindrical mesh shell, reinforcement, cross-shaped elements, forces, displacements