Evaluation of the strength characteristics of concrete is an important criterion for the quality of building structures when examining the engineering and technical condition of buildings with a monolithic reinforced concrete frame. The main controlled indicator when assessing strength is the class of concrete by compressive strength, determined in accordance with GOST 18105-2018 by statistical processing of test results by destructive or non-destructive methods. The article assesses the methods used to control the strength of concrete in buildings under construction or in operation, provides the main requirements for the tests carried out, gives examples of the necessary equipment, and presents the most rational algorithm for assessing strength. The research materials will be useful for specialists in the field of construction and researchers dealing with issues of the quality of building materials.
Keywords: non-destructive testing, concrete compressive strength, concrete testing, concrete class, calibration dependence, monolithic structures
The article describes the features of using a two-layer membrane with the use of injection control fittings in the installation of underground waterproofing. The circumstances preventing the mass application of this technology have been identified, the main part of which is related to the increase in the cost of work at the initial stage. However, the use of the technology is justified because it allows you to localize the location and period of leakage, has increased maintainability and durability.
Keywords: waterproofing, modern waterproofing technologies, double-layer membrane, injection control fittings
This paper provides an analysis of the main problems encountered during the installation of bitumen-polymer roofing materials. Special attention is paid to typical defects and errors related to insufficient qualifications, as well as problems related to violations of installation technology.
Keywords: bitumen-polymer roofing, installation of a surfaced roof, waterproofing defect, quality management, recommendations for improvement
As a result of changes in regulatory documents on acceptance of residential premises, there is a need to develop illustrative methodological materials that would allow the future owner to independently, i.e. without the involvement of an external qualified specialist, to perform the acceptance of the apartment, pointing out to the representative of the developer involved in the acceptance of significant construction defects. The purpose of the study is to determine the structure of construction defects in residential premises and to identify the most common defects in this structure, which will allow the future owner to independently perform the acceptance of the apartment. In the article, based on the analysis of a significant number of claims from apartment owners to the builder and the results of the authors' research in the scope of forensic examinations and pre-trial construction-technical investigations, the structure of construction defects, which are massively identified in the process of acceptance of apartments, is defined and presented. The groups of defects that are most frequently encountered in practice are presented. To ensure the clarity of practical use of the obtained analytical materials, a list of mass construction defects identified in the process of acceptance of residential premises, indicating their category necessary for making a decision on the mandatory elimination of defects is defined.
Keywords: acceptance of apartments, construction defects, structure, defect groups, construction defect, substantial defect, non-substantial defect, building and technical expertise, translucent construction, engineering networks, finishing of premises
This article examines several key aspects related to the impact of high-rise buildings on human health and psychological state. First of all, the impact of high-rise buildings on mental health is analyzed, paying special attention to problems such as depression, anxiety and stress that can arise as a result of living in multi-storey buildings. We explore the social aspects of living in such conditions and the impact of architectural design on the quality of life. In addition, we would like to draw attention to the health problems of residents of high-rise buildings, including physical illnesses that can occur as a result of lack of natural light, poor ventilation and other factors associated with high-rise buildings. An important part will also be the discussion of possible solutions to improve the quality of life in multi-storey buildings.
Keywords: megapolis, high-rise buildings, high-rise buildings, building density, architectural design, emotional state, health, comfortable environment, quality of life.
The article considers the issues of increasing road safety in urban development in winter. The causes of snow and ice deposits and their impact on the comfort and safety of traffic, including pedestrians, are considered. A review of modern snow melting and road surface heating systems is provided, with the most effective examples of road surface heating projects being given. A comparative analysis and assessment of the effectiveness of road surface heating systems is performed, using a 1000 m2 car park as an example. Recommendations are given for the use of road surface heating systems.
Keywords: highways, hydrothermal systems, electrical systems, road surface heating
The article considers issues related to the development of the territories of the Far North and the Arctic, namely, issues of ensuring transport accessibility of the northern regions. The issues of relevance and demand for the construction of winter roads and ice crossings are considered. The features of the construction and operation of winter roads are studied. The main methods of strengthening and extending the service life of winter roads are considered and analyzed. Options for strengthening winter roads and ice crossings with geosynthetic materials are proposed and substantiated. Recommendations are given to reduce the environmental impact of measures to strengthen winter roads on the environment.
Keywords: winter roads, ice crossings, ice coverings, strengthening, reinforcement
Modern approaches to fire safety in modular buildings are analyzed. The features of these structures from the point of view of fire safety, innovative materials and technologies, regulatory requirements and successful examples of fire prevention measures have been studied. The importance of introducing advanced solutions to improve safety in the rapidly developing field of modular construction was emphasized.
Keywords: technology, module, fire hazard, fire safety, construction, material, requirements, risk, construction, implementation
The article provides a comparative analysis of the approaches to forecasting rutting used in Russia and the USA. Mechanistic–Empirical Pavement Design Guide (MEPDG) and domestic regulatory documents are reviewed, and their key differences in forecast accuracy, applicability, and calculation complexity are identified.
Keywords: rutting, forecasting of road structures, MEPDG, monitoring of road conditions, regulatory methodologies
The article examines the analysis of modern approaches to the organization of an inclusive environment in construction. The structure of the previously developed algorithm has been clarified, taking into account the key criteria of accessibility, informativeness, safety and comfort. The calculation of the adaptation of structures and services using the example of a standard apartment building (MCD) confirmed the effectiveness of the proposed approach. It has been established that the implementation of the algorithm, taking into account user needs, allows us to talk about optimal solutions for an inclusive urban environment, which is especially important in the context of the development of the "city within a city" concept.
Keywords: inclusive environment, construction, adaptation, accessibility, algorithm, criteria, urban transport, infrastructure, people with limited mobility, calculation, structural elements, safety, informativeness, comfort, apartment buildings
The article is devoted to the analysis and optimization of the stability of engineering structures to wind loads through the use of innovative structures of support and anchor foundations. In modern construction, when the requirements for reliability and stability of buildings have increased, special attention is being paid to the development of effective foundations capable of withstanding both compressive and pulling loads. Support and anchor foundations are presented as a comprehensive solution, including combined anchors and a monolithic slab (grillwork), ensuring uniform load distribution. The main focus is on the combined anchor, which acts as the main working element that receives the forces from the structure and effectively transfers them to the ground. Unlike traditional piles, the proposed design significantly increases the resistance to pulling due to the use of wire anchors with high load-bearing capacity.
Keywords: pile, conical tip, support and anchor foundation, support, combined anchor, grillage
The article is devoted to the assessment of the strength of reinforced concrete elements with defects and damages. It examines the main types of defects (reinforcement corrosion, cracks, deformations, shrinkage, spalling of concrete, etc.), their causes, and consequences. The document also presents various calculation methods for evaluating the residual load-bearing capacity of structures, taking into account these defects, including formulas for assessing the impact of corrosion, cracks, and other damages on the strength of beams. It is noted that current methodologies primarily focus on analyzing a single type of defect, while a comprehensive approach to evaluating multiple damages requires further research. The research results can be useful for developing recommendations for the operation and repair of reinforced concrete structures, as well as for improving methods of assessing their safety during long-term use.
Keywords: strength, load-bearing capacity, damage, defect, crack, corrosion, degradation, experiment, reinforced concrete, beam
The article examines the use of unmanned complexes for finding and identifying defects in the construction of buildings and structures. The use of unmanned complexes integrated into practice for quality control of construction works of concrete and steel surfaces, as well as for regular inspections of buildings, insulation or ventilation systems is given. The prospects of using unmanned complexes for repair work, which contributes to improving the performance of the construction organization, were confirmed.
Keywords: machine vision, software, unmanned complex, survey, defect
In this article, we examined the permeability of concrete and the effect of corrosion processes on the durability and reliability of reinforced concrete structures. Attention is paid not only to the causes and mechanisms of corrosion, but also modern methods and strategies for protecting concrete and reinforced concrete structures from it are provided, aimed at extending their service life and ensuring operational safety. This knowledge will allow engineers and builders to plan and implement projects more efficiently, reducing the risks and economic losses associated with corrosion processes.
Keywords: corrosion of concrete, corrosion of steel reinforcement, permeability, reinforced concrete, durability, strength, reliability
The article provides a comprehensive analysis of defects in monolithic reinforced concrete structures, commonly encountered during the construction of multi-storey buildings. The main types of defects and damage are discussed, such as cracks, concrete spalling, destruction of the protective layer, exposure and corrosion of reinforcement bars, formation of cavities, concrete overflow, gravelly texture, geometric deviations, and cold joints in concreting. Their general description, causes of occurrence, classifications, parameters, and consequences for the operational characteristics of the structures are presented. Special attention is given to modern diagnostic methods and repair technologies, which significantly extend the service life of buildings and enhance their safety throughout their lifecycle. The results presented can be used by engineers, builders, and repair specialists to optimize construction processes, control the quality of work, and ensure the timely elimination of identified defects.
Keywords: Inspection of structural elements, reinforced concrete, defects of monolithic structures, cracks, reinforcement corrosion, repair, concrete quality, cold joint, monolithic construction, concrete surface quality
The article considers the influence of the technical condition of buildings on their additional deformations in the zone of influence of new construction. As a result of the survey, it was confirmed that the buildings of the historical development of the III category of technical condition were in an unsatisfactory condition. In accordance with this, a numerical calculation was carried out, as a result of which an option for strengthening their foundations with the help of piles made using jet technology was proposed. According to the preliminary numerical calculation, additional deformations of buildings of the III category did not exceed the maximum permissible values. The adopted option of strengthening in this case did not justify itself and the actual deformations of the buildings turned out to be higher than the limit values already at the zero mark. Based on the monitoring data, it was found that the values of additional settlements are constantly growing in the process of erecting buildings of the multifunctional complex. Based on the calculation data, graphs were constructed illustrating the discrepancy between the actual additional deformations and the calculated values depending on the category of the technical condition of the buildings and their location in the zone of influence of the pit. Thus, when determining the zone of influence of new construction in close proximity to historical buildings, it is necessary to take into account their technical condition and operational safety.
Keywords: technical condition category of buildings, zone of influence of new construction, additional deformations, estimated and actual settlements of buildings
Additive manufacturing technologies (AMT) has become one of the main trends in the development of innovative technologies in construction sector. The study examines the implementation of AMT using practical and illustrative example of its utilisation. In order to demonstrate and describe the sequence of steps 3D model of undersized building was created using fused deposition modeling (FDM). The methodology applied is model-driven. It was chosen in order to collect the experience, compare it with previous studied and use to the realistic manufacturing process. The aim of this paper was to identify possible limitations and challenging issues requiring further consideration and development. The main assumptions of this experiment are stated below with the purpose to explain the results obtained properly. In this study limitations of the previous studies are highlighted and possible solution methods are described referring to literature review and analysis. The main steps of AMT are shown step by step aimed to consistently study and reproduce the real process. The obtained information could broaden the current knowledge and help the researchers to apply the 3D printing (3DP) to access the full potential of it. Moreover, the paper also hypothesized the possible future directions for the future studies. Overall, the current key challenges to overcome in the nearest future are presented and discussed with a view to enable clean insights of AMT integration in construction sector.
Keywords: additive manufacturing, additive construction, construction technology, construction automation, digital construction, 3D printing, 3D model, civil engineering, emerging technology, fabrication, construction design, technology adoption
Numerical analysis of stress-strain state of monolithic slab with account of corrosion damage of concrete and reinforcement of compressed and tensile zones in the span part of the slab in PC LIRA-SAPR is carried out. 6 variants of corrosion damage depending on the area of spreading and degree of degradation are considered. The calculations have been carried out taking into account physical and geometrical nonlinearity. The peculiarities of structural deflections changes at different variants of corrosion damage and loading levels of the floor slab have been revealed. Redistributions of forces in spans and on supports arising at local changes of concrete and rebars stiffnesses are analyzed. No structural failure stage has been identified for the adopted design characteristics and damage variants.
Keywords: monolithic slab, corrosion damage of reinforced concrete, numerical analysis, redistribution of forces, bearing capacity, deformation capacity
The article presents the results of the second stage of a study to assess the load-bearing capacity of a running meter of a centrally loaded wall of various thicknesses, heights and strengths made of masonry. The second stage includes the study of masonry walls with elastic characteristics α = 200, 350, 500, 750 and is a logical continuation of the first stage, in which masonry with elastic characteristics α = 1000, 1200, 1500 was studied.The results of the study make it possible to minimize the use of a software package for preliminary determination of the bearing capacity of a centrally loaded stone structure and can become part of a practical guide for engineers involved in the technical inspection and design of masonry structures.
Keywords: bearing capacity, wall, stone structure, elastic characteristic of masonry, centrally loaded element, stone, brick, block, masonry mortar, coefficient of longitudinal bending, flexibility
The article is devoted to numerical modeling of corrosion-damaged reinforced concrete columns under low-cycle horizontal loading by static load in LS DYNA software package. The comparison of numerical calculation and experimental data on research of strength of reinforced concrete columns with corrosion damage of reinforcement under low-cycle horizontal loading is carried out.
Keywords: corrosion, reinforcement, seismics, reinforced concrete, corrosion damage, low-cycle strength, numerical modeling
The article discusses the theoretical, methodological and applied aspects of the development of organizational and technological solutions for quality control of structures built using the "white bath" technology in civil engineering. The characteristic of this technology as a method of integrated waterproofing based on the use of waterproof concrete and a joint sealing system without the use of external protective coatings is presented. Attention is paid to identifying factors affecting the quality of the structure, including the composition of the concrete mix, the conditions of production and laying of concrete, the design and installation of joints. The paper proposes a methodology for building a quality control system that includes a step-by-step process management algorithm, formalization of evaluation criteria using mathematical modeling, and consideration of current regulatory requirements. The practical implementation of the proposed solutions at a specific construction site demonstrated a reduction in the proportion of defects, an increase in the strength of concrete and the water resistance of the structure, and an improvement in the technical and economic performance of construction. A comparative analysis of the effectiveness of a number of key parameters is presented. Conclusions are drawn about the expediency of introducing the "white bath" technology in a complex hydrogeological environment and the high practical significance of the developed organizational and technological solutions is confirmed. The work is aimed at specialists in the construction industry, designers, engineers and the scientific community involved in improving the reliability and durability of concrete structures.
Keywords: white bath, concrete, waterproofing, quality control, seams, water resistance, sealing, technology, building structure, additive, seal, strength, model, standard, defect
The paper analyzes existing 3D printing technologies in the context of application in construction. The experience of 3D printing application in commercial projects is considered. Scientific research on the improvement of various technologies is summarized. 3D printing technologies promising for construction - wire-arc and ultrasonic additive manufacturing - are identified.
Keywords: 3D printing, construction, additive technologies
The area where the floor is supported by a column is one of the most critical areas in buildings with a load-bearing system made of monolithic reinforced concrete. This is due to the high concentration of forces and, as a consequence, the densest reinforcement within the floor. When designing such structures, the problem of initially setting the thickness of the floor from the conditions of punching arises, without yet having a spatial calculation scheme that allows correctly determining the bending moments in the node working on punching. In the article, conditions are obtained for the necessary and sufficient thickness of floors with and without transverse reinforcement depending on the punching force F in the column.
Keywords: punching shear resistance, flat reinforced concrete slab, static load
The technology of ensuring accident-free operation of tunnels and underground structures is presented. An analysis of various technical solutions currently used in the open and semi-closed method of constructing underground structures for transport purposes is given. Methods for reducing the occurrence of emergency situations during the operation of tunnels and underground structures are proposed.
Keywords: building structures, metal structures, energy facilities, stress-strain state, technical expertise
In this paper, an analysis of the calculation results is carried out, which makes it possible to assess the real impact of impact and explosive effects from UAVs on the strength of reinforced concrete structures. Load limits are set, depending on the four most common types of walls. The previously published classification made it possible to identify the main parameters necessary for a detailed load calculation.
Keywords: extreme loads, explosion, self-supporting walls, reinforced walls, non-reinforced walls, load-bearing walls, UAVs, strength testing, building structures, shock waves