The Russian Federation is a multi-religious state, which has recently seen an increase in the construction of various religious buildings. At the same time, the bulk of the churches being built are small buildings, located, as a rule, in villages and small towns and designed for simultaneous visits by up to 120-150 parishioners. Various materials are used for their construction, including wood. Usually these are log or block buildings, but it is also possible to use other wooden housing construction systems, including light frame ones. The theoretically possible remoteness of towns and villages from large district and regional centers, the impossibility of delivering large-sized beams and logs, the lack of their own production base and other factors lead to the need to use ordinary boards in wooden frame structures. As an example, we consider the construction of the Church of the Transfiguration of the Lord in one of the farms in the Rostov region, the load-bearing structures of which are made using light-frame house-building technology. The presence of open space in the central part of the Temple and the placement of an octagon-shaped superstructure above it required the use of a supporting structure made of steel I-beams. Thus, the structure of the Temple frame is a metal-wood system. The article shows that the combined use of steel and wood in light-frame buildings ensures a rational organization of the space of religious buildings.
Keywords: religious building, temple, belfry, octagon, narthex, altar, wood, light frame building, beam, I-beam, supporting structure
Steel roof trusses are the main type of load-bearing structures used in the roofing of industrial buildings. Among them, trusses of the “Molodechno” type have become widespread, in which closed bent-welded profiles of square and rectangular cross sections are used as rods. The use of this type of rolled product makes it possible to create structures without gussets and connecting strips, with a maximum degree of process automation, which significantly reduces labor intensity and reduces the cost of their production. Another feature of the coatings under consideration is their non-running solution. The trusses are located in 4m increments, supported by rafter structures. However, in such a situation, the loads on the truss and the forces in the elements are small, and therefore, and also taking into account the limited range of bent-welded profiles, understressing of the truss elements and excessive consumption of metal are likely. Three variants of coatings with different pitches of trusses were considered, and the metal consumption per square meter of coating was determined. It has been proven that with increasing pitch of trusses, the metal consumption of coatings decreases.
Keywords: "Molodechno", rafter truss, sub-rafter truss, continuous purlin, lattice purlin, truss pitch, metal consumption