You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.


+7 961 270-60-01

  • Mathematical modeling of non - stationary cooling 3d-printed multilayer objects

    Temperature regimes of heating and cooling in three-dimensional printing are the most significant part of the technological solution in the production of products in any industry: from printing parts for aviation and rocket engineering to the construction of buildings or the manufacture of prosthetic human bones. The paper considers a simple and reliable method for obtaining calculated values of non-stationary temperatures and heat fluxes during layer-by-layer printing of products with various thermophysical properties and imperfect contact between layers, which does not require special software shells and large machine resources for calculations.

    Keywords: non-stationary heat transfer, multilayer printing of products, additive manufacturing, 3D printing of products, heating and cooling of multilayer products, layer-by-layer deposition, optimization of the temperature regime of printing products