Framed fabric roof structures of the sawtooth-type are considered. The structures are arranged on rectangular plan. They consist of a number of sectors which are separated by arch-shaped supporting ribs. The sectors are covered with a prestressed soft shell. Geometric nonlinear static analysis of the shell is performed taking into account the effect of snow and wind loads. The general dimensions of the shell and the prestress value are considered as the primary variables. Quantitative assessment of deformation of the shell is carried out by means of so-called deformability index. The index is reciprocal to the relative deflection. A functional expression for approximating the deformability index is proposed. The expression is to be used at the stage of developing the design solutions for fabric structures. The coefficients of the function are found by means of the least squares method. The guidance for assigning the main parameters of the sawtooth-type fabric structures are given.
Keywords: fabric structure, roof structure, soft shell, sawtooth roof, geometric parameters, prestress, deformability, approximation