The article discusses some methods for the construction of long-span coverings from precast reinforced concrete elements and prefabricated steel structures. To systematize these design and technological solutions and determine the effectiveness of their application based on the parameters of manufacturability, a comparative analysis was carried out. The construction technologies were compared according to the following parameters: specific and total labor intensity, the level of mechanization, the total number of elements, the average and maximum mass of one element, the total mass of the mounted elements, and the equilibrium coefficient. The analysis showed that for reinforced concrete structures, installation in blocks is most effective, involving preliminary enlargement at ground level, followed by lifting and installation in the design position. Precast reinforced concrete shells have a higher level of mechanization and a degree of equilibrium, which makes it possible to use crane equipment efficiently, but due to their considerable weight, they require the use of supporting structures and high-load cranes. The installation of prefabricated steel structures in its entirety with preliminary enlargement at ground level is the least laborious, but the need to install a large number of low-mass piece elements reduces manufacturability.
Keywords: installation of long-span structures, installation of triple-layer rotational shells of double curvature, installation of steel beam structures, installation of a spatial structural roof unit, installation of the entire roof structure as a single unit