×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

  • Correction of the trajectory of the robotic object, taking into account the field of repeller sources

    The movement of robotic systems can occur in conditions of interference disturbances, different in quality and power. In this case, the actual task is to correct the initial planned trajectory of the robot's movement in order to evade the latter from the action of these sources in order to maximize some quality functionality. It is advisable to associate the latter with the probability of successful passage of the target trajectory in the field of interference effects. The peculiarity of such an adjustment is the complexity of optimizing the corresponding probability functionals, which leads to the need to develop approximate optimization methods based, however, on a fairly accurate calculation of the probabilities of successful passage for each specific trajectory. In this article, we propose such an approximate correction technique that allows us to effectively bypass interference sources defined by their known areas of action and characteristic probabilistic functions. This technique is based on an iterative procedure of successive approximations to such a trajectory, which has a given probability of successful passage. The developed technique can be effectively integrated into the movement planner of robotic objects moving in conditions of obstacles with fixed boundaries, as well as corresponding repeller sources, information about which allows us to estimate with sufficient accuracy the probability of successful passage of any trajectories in their vicinity at a given speed mode of movement.

    Keywords: robotics complex, repeller sources, motion planning, probability of successful completion, iterative procedure, target functionality

  • Features of taking into account kinematic constraints when planning the UAV trajectory

    This article proposes a method for correcting the intermediate trajectory obtained by one of the planning methods, taking into account the limitations on the linear velocity and acceleration of the apparatus, as well as on the angle of its pitch. This technique is combined with the smoothing procedure, which includes the stage of minimizing the length of a piecewise polyline trajectory and rounding the corners at the vertices with the construction of a smooth time parametric representation of it using the modified Dubins method.

    Keywords: robotics complex, unmanned aerial vehicle, stability and controllability of the vehicle, motion planning, local adjustment of the planned trajectory, reduction of energy costs

  • Methodology for correcting the trajectory of a multicopter-type unmanned aerial vehicle

    This article discusses a new method for adjusting the ground speed of a multicopter-type unmanned aerial vehicle and the initial, previously planned trajectory of its movement, taking into account horizontal stationary wind flows. The use of this technique for local rescheduling of the trajectories being worked out makes it possible to reduce the probability of loss of stability and controllability of such a device, as well as to reduce energy costs when driving in conditions of significant winds with an acceptable deviation from the initial trajectory. The developed algorithm is the basis for the synthesis of more accurate algorithms for local correction of the initial trajectory of motion in a complex field of wind speeds. The efficiency of the algorithm is confirmed by the physical correctness of the simulation results.

    Keywords: unmanned aerial vehicle, wind load, stability and controllability of the vehicle, local adjustment of the planned trajectory, reduction of energy costs