This paper explores the content-based filtering approach in modern recommender systems, focusing on its key principles, implementation methods, and evaluation metrics. The study highlights the advantages of content-based systems in scenarios that require deep object analysis and user preference modeling, especially when there is a lack of data for collaborative filtering.
Keywords: сontent - oriented filtering, recommendation systems, feature extraction, similarity metrics, personalization
This article is devoted to a comparative analysis of methods for extracting knowledge from texts used to build ontologies. Various extraction approaches are reviewed, such as lexical, statistical, machine learning and deep learning methods, as well as ontology-oriented methods. As a result of the study, recommendations are formulated for choosing the most effective methods depending on the specifics of the task and the type of data being processed.
Keywords: ontology, knowledge extraction, text classification, named entities, machine learning, semantic analysis, model