×

You are using an outdated browser Internet Explorer. It does not support some functions of the site.

Recommend that you install one of the following browsers: Firefox, Opera or Chrome.

Contacts:

+7 961 270-60-01
ivdon3@bk.ru

  • The development of gas recognition technique using multysensor system for air monitoring

      The problem of air quality control is relevant at the present time. There are a lot of different devices and methods of air monitoring. The promising devices for air monitoring are automated air monitoring systems functioning in real time regime. The basic part of such system is a chemical gas sensor. Gas sensors can be combined into the arrays or so called multisensory systems to increase their effectiveness. Sensor arrays using semiconductor sensors based on SiO2CuOx, SiO2SnOxCuOy, SnOxZrOy, silver-polyacrylonitrile thin films made at department of chemistry and ecology have been investigated in this work. As a result of sensors signals processing gas recognition technique has been developed. The recognition of ammonia, nitrogen dioxide, chlorine has been made.

    Keywords: monitoring, massifs of sensors, semiconductor sensors of gases

  • Investigation properties of composite material for high sensitivity nitrogen dioxide sensors

      We have investigated electrical and gas sensitive properties of gas sensor based on carbon nanotubes (CNT) and carbon nanotubes modified by metal oxides (such as tin oxide and silicon oxide).  Also we  have find out that modification of  CNT by  metal oxides helps to  improve film`s adhesion to substrate, decrease electrical resistance, recovery time, working temperature , enhance gas sensitivity in comparison with sensitive elements based  only on CNT or metal oxides. Moreover experimental results showed that properties of composite material depend on concentration correlation of solutions. As a result we can get highest sensitivity of sensor element by choosing optimal relation between concentrations of solutions.

    Keywords: Сarbon nanotubes, modification, tin oxide, silicon oxide, gas sensor

  • Microfluidics structure fabrication using focused ion beams for hybrid systems

      The experimental studies of technological modes of formation of the elements for hybrid microfluidic sensor systems using focused ion beams by nanotechnology complex UHV NANOFAB are performed. The parameters of the focused ion beam to enable the development of microfluidics components are determined. Methods of forming of microfluidics structures on silicon substrate are studied. Parameters of generated elements were studied by scanning electron microscopy and atomic force microscopy. Formed and studied filtration membranes containing holes from 105 to 150 nm in diameter. The results can be used in the formation of nanoscale structures and the development of manufacturing processes microfluidics components for hybrid systems and lab-on-chip.

    Keywords: Nanotechnology, focused ion beams, microfluidics, hybrid systems, sensor, lab-on-chip

  • Investigation of the modes formation of the hybrid carbon nanostructures based on nanotubes for creation nanostructured materials

      The experimental studies of technological modes of formation of hybrid carbon nanostructures based on the nanotubes by multifunctional ultrahigh vacuum nanotechnological complex NANOFAB NTK-9 are performed. The parameters of the impact on hybrid nanostructures formation were found, established and studied experimental samples modified and Y-shaped hybrid carbon nanostructures . The results can be used as elements of nanoelectronics and nanosystem technology, composite fillings compounds and hydrogen storage.

    Keywords: Nanotechnology, carbon nanotubes, hybrid carbon nanostructures, nanostructured materials

  • Development of technology of receiving high-sensitivity gas sensors on the basis of zirconium oxide for hybrid sensor systems

      In this work the technology of receiving high-sensitivity gas sensors on the basis of zirconium oxide is developed for hybrid sensor systems. Laboratory samples of sensors of gas on the basis of zirconium oxide are made with use sol-gel method. Gas-sensitive characteristics of samples of sensors in relation to nitrogen dioxide are defined: limit of detection and factor of gas sensitivity. The received gas sensors will help to determine approach of an attack of bronchial asthma some hours prior to its beginning by level of an oxide of nitrogen in exhaled air of the person.

    Keywords: hybrid sensor systems, zirconium oxide, bronchial asthma, nitrogen dioxide

      In clause by the author it is proved, that in an agriculture transition to intensive forms of reproduction means improvement of use of the ground as main means of production at maintenance of increase of feedback of a fixed capital, power capacities, labor and material resources, therefore the priority in intensity of use of the grounds consists in the maximal increase of economic fertility and productivity of each hectare on the basis of various improvements.

    Keywords: ground resources, rational use of the ground, a qualitative condition, increase of fertility of ground