

Ab initio изучение адсорбции атомов W, N и O на поверхности TiB₂(0001)

Д.К. Фам

Донской Государственный Технический Университет

Аннотация: Используя расчеты из первых принципов, мы систематически исследовали адсорбцию вольфрама на поверхности (0001) TiB₂, ограниченной титаном. Здесь рассмотрена модель, в которой атомная структура двух поверхностных слоев содержит неупорядоченные вакансии атомов титана и бора. В рамках теории функционала плотности изучены локальные атомные структуры поверхностей $R/TiB_2(0001)$ (где R = W, N, O) адсорбционных моделей и электронные свойства. Впервые установлены длины связи и энергия адсорбции для разных реконструкций атомной поверхности систем $R/TiB_2(0001)$. Выполнены оценки эффективных зарядов на атоме вольфрама (N и O) и атомах ближайшего окружения в изученных реконструкциях.

Ключевые слова: диборид титана, адсорбция, атомная структура, электронная структура, эффективный заряд, лазерное легирование

Введение

Диборид титана (TiB₂) является чрезвычайно твердой керамикой (25 ГПа), которая обладает отличной теплопроводностью, устойчивостью к окислению и высокой стойкостью к механической эрозии [1]. Такие свойства TiB_2 широкую область открывают его применения, В частности, высокотемпературные конструкционные материалы, режущие инструменты, электроды для наплавки металла и ремонта изношенных деталей [2, 3]. Тонкие пленки ТіВ₂ могут быть использованы в качестве покрытия для обеспечения износоустойчивости и коррозионной стойкости для основы деталей [3]. Несмотря на отмеченные выше достоинства TiB₂ имеет один недостаток, обусловленной его хрупкостью [1, 4]. Поэтому для повышения функциональных свойств и применений в состав композита на основе TiB₂ добавляют металлические и неметаллические компоненты [2]. Изучена роль отмеченных компонент на структуру и механические свойства TiB₂. Однако эффекты адсорбции вольфрама на нестехиометрических ультратонких слоях диборида титана, контролирующие термодинамические и электронные

свойства системы типа W/Ti_xB₂(0001), еще не изучены. Улучшение свойств механических поверхностного слоя материала может быть структурированием поверхности результате обработки достигнуто В лазерным излучением [4, 5]. В нашем случае процесс структурирования включает лазерное поверхностное легирование вольфрамом. Воздействие лазерной плазмы осуществляется на воздухе, поэтому на поверхности TiB₂ могут наблюдаться сопутствующие процессы хемосрбции азота и кислорода. Из первых принципов изучены адсорбция атомов W, N O на полярной поверхности Ti_xB_{2-v}(0001), содержащей в поверхностных слоях вакансии атомов Ті и В. Выполнены расчеты энергии адсорбции, структурных, и электронных свойств нестехиометрических атомных систем R/Ti_xB_{2-v}(0001) (R=W, N, O).

Модель и метод

Теоретическая модель изучаемой системы $R/Ti_{x}B(0001)$ (R = W, N, O) построена по схеме трехпериодической пластины. Была построена расчетная суперячейка TiB₂(0001) с 5 бислоями и размерами элементарной ячейки (2x2) TiB₂ в плоскости (0001). Рассчитанные параметры решетки хорошо согласующиеся с экспериментом [6]. Вакуумная щель выбиралась шириной 15 Å, что позволило исключить какое-либо взаимодействие между трансляциями пластины в направлении [0001]. На рис. 1a,b приведен фрагмент пластины TiB₂(0001) и на рис. 1с указаны возможные положения адсорбата. Все расчеты были выполнены на атома основе теории функционала электронной плотности (DFT) с использованием приближения псевдопотенциала (код Quantum-Espresso) [7]. Для обменно-корреляционной энергии были использованы функционалы в форме РВЕ в рамках приближения (GGA). Для плоских волн, использованных в разложении псевдоволновых функций, энергия обрезания составляла 30 Ry. Энергия обрезания плотности заряда составляла 300 Ry.

Рис.1. Расчетная модель поверхности TiB₂(0001) (а – вид верху, b – вид сбоку) и (с) связывающие позиции атома W (N, O) на поверхности (0001) TiB₂

При расчете всех поверхностей была использована схема генерации k-точек по методу Монкхорста-Пака с плоской сеткой размерностью 5х5х1. Была достигнута сходимость по полной энергии ячейки не хуже 10⁻⁶ Рид/яч. Для описания взаимодействия валентных электронов с остовом мы использовали параметризации Вандербильта. ультрамягкие псевдопотенциалы В Энергия адсорбции атома вольфрама в системе R/TiB₂(0001) определялась аналогично работам [7]: $E_{ads} = E_{tot} - E_{ref} - E_W$, где E_{tot} - полная энергия системы $R/TiB_2(0001)$ (R = W, N, O), E_{ref} - полная энергия релаксированной поверхности без адсорбата, и *E*_w - энергия изолированного атома вольфрама (азота, кислорода). На основе анализа заселённости по Левдину [5] определялись эффективные заряды на атоме вольфрама (азота, кислорода) и ближайших к нему поверхностных атомах титана и бора для четырех адсорбционных моделей R/TiB₂(0001) и R/Ti_xB₂(0001).

Атомная структура R/TiB₂(0001) (R = W, N, O)

Для изучения адсорбции атома W (N, O) на поверхности диборида титана 2D $R/TiB_2(0001)$ (R = W, N, O) была проведена релаксация верхних двух двойных атомных слоев (Ti, B) пластины диборида титана с адсорбатом. Первоначально атом W (N, O) помещался на расстоянии 2 Å от поверхности $TiB_2(0001)$. Нижние двойные слои (Ti, B) системы R/TiB₂(0001) (R = W, N, O) были «заморожены». Релаксация осуществлялась до тех пор, пока сумма всех сил действующих в системе не становилась меньше 0,001 эB/Å. Атомная структура пятислойной пластины с адсорбатом для различных конфигураций после релаксации, представлена на рис. 2. Установлены равновесные параметры решеток, атомные позиции атома W (N, O) и атомов верхних слоев диборида титана. Атомная структура четырех различных конфигураций W/TiB₂(0001) после релаксации представлена в сопоставлении с неадсорбированной системой на рис. 2. Определены длины связи между атомом W и атомами ближайшего окружения пластины TiB₂(0001), которые приведены в табл. 2. Тестовый расчет атомной структуры TiB₂(0001), не искаженный адсорбцией атома W, показал, что длина B-B-связи составила $d_{B-B} = 1,749$ Å, что хорошо согласуется с данными DFT расчетов $d_{B-B} = 1,747$ Å [8]. Максимальная деформация длины Ті-В-связи поверхностного слоя наблюдается для связывающей позиции А и составляет 2,9 % относительно длины связи для чистой поверхности 2D TiB₂(0001). Для позиции А характерна наименьшая дистанция между W и атомом Ti ($d_{W-Ti} = 2,19$ Å), которая соизмерима с Ті-В-связью в тонкой пленке 2D ТіВ₂(0001) (см. табл. 2). В позиции А ближайший к W атом Ті сместился вниз в направлении [0001] относительно усредненной поверхности верхнего слоя на величину 0,13 Å (см. рис. 2b). Природа данного смещения может быть связана с наличием переноса заряда между атомами Ti, W и B, что будет показано ниже.

Рис. 2. Суперячейки адсорбционной модели системы W/TiB₂(0001) после релаксации (виды сверху и сбоку). Атомы титана серые, бора – розовые, вольфрама – оранжевые шары

Согласно [11], атомные радиусы Ті и W равны 1,76 Å и 1,93 Å соответственно и следует ожидать установление прочной связи адсорбата W с поверхностью TiB₂(0001). Для позиций В и С наблюдается удаление адсорбата W от поверхности более чем на 10 % относительно позиции A (см. табл. 2). Хорошее совпадение длины связи d_{R-R} для идеальной поверхности с данными работы [10] указывает на адекватность рассматриваемой здесь атомной структуры. Результаты релаксации адсорбционной модели W/Ti_xB₂(0001) приведены на рис. 2с. Анализ рис. 2с показывает, что, при наличии одной вакансии в самом верхнем слое титана, атомы вольфрама способны замещать эту позицию, образуя W-B-связи длиной $d_{W-B} = 2,28$ Å с шестью атомами бора. Длина связи W-Ti-связи с шестью поверхностными атомами титана составляет $d_{W-T_i} = 3,03$ Å и с чем можно связывать ненасыщенность этой связи. Аналогично изучена атомная структура пяти различных конфигураций системы N/TiB₂(0001). Длины связи между атомарным азотом и атомами ближайшего окружения пластины диборида титана, которые приведены в табл. 2.

Таблица 2. Длины связи Ti-R, B-R, Ti-B и B-B для связывающих позиций атома адсорбата R на поверхности TiB₂(0001) пластин после релаксации

DI	Длина связи,	T'D	Положение адсорбата на ТіВ ₂ (0001)					
Phase	A	T_1B_2	А	В	C	A, Ti _{vac}	D, B _{vac}	
W/TiB ₂	Ti-W	-	2.187	2.507	2.402	3.031	-	
	Ti-B	2.332	2.265	2.332	2.326	-	-	
	W-B	-	-	-	-	2.282	-	
	B-B	1.749	1.767	1.756	1.757	1.756	-	
		1.747						
		[10]						
N/TiB ₂	Ti-N	-	1.732	1.938	1.855	3.166	2.344	
			2,129[12]					
	Ti-B	2.332	2.313	2.371	2.348	2.339	2.335	
	B-N	-	3.681	2.731	2.960	3.026	1.754	
O/TiB ₂	Ti-O	-	1.702	1.967	1.881	3.201	2.315	
			1.68 [13]					
	Ti-B	2.332	2.391	2.351	2.346	2.326	2.381	
	B-O	-	-	2.761	2.981	3.103	1.873	

Для связывающей позиции А имеет место деформация сжатия длины Ti-B-связи поверхностного слоя, которая составляет 0,8 % относительно длины связи для чистой поверхности 2D TiB₂(0001). Для позиции A характерна наименьшая дистанция между адсорбатом N и поверхностным атомом Ti ($d_{N-TT} = 1,73$ Å), которая в 1,35 раза меньше Ti-B-связи в тонкой пленке 2D TiB₂(0001) (см. табл. 2). Сопоставление длины связи $d_{N-TT} = 1,73$ Å в системе N/TiB₂(0001) с аналогичной длиной связи $d_{N-TT} = 2,129$ [14] в кристалле TiN позволяет предположить установление прочной связи ковалентного типа между адсорбатом N и поверхностным атомом Ti. В позиции fcc атом азота образует три Ti-N-связи длиной $d_{TT-N} = 1,94$ Å. В конфигурации C азот образует две Ti-N-связи длиной $d_{TT-N} = 1,86$ Å, занимая позицию мост. Следует отметить, что для позиций B и C длина связи между атомами азота и титана на 12% и 7 % соответственно больше, чем в позиции

А. Однако, эти длины связи d_{N-T_i} оказываются меньше, чем в кристалле TiN, поэтому могут обуславливать возникновение прочных химических связей. Таким образом, рассмотренные три связывающие позиции могут выступать в качестве центров нуклеации кристаллической фазы TiN на ранней стадии, что косвенно подтверждается опытом нанесения тонких пленок нитрида титана [15]. При наличии вакансии титана атом N образует длину химической связи $d_{N-T_i} = 3,17$ Å. В случае вакансии бора атом азота занимает положение вакансии и тогда длина N-Ti-связи увеличивается до $d_{N-Ti} = 2,34$ Å. Атомная структура пяти конфигураций O/TiB₂(0001) после релаксации изучена здесь (см. табл. 2). Для позиции А имеет место деформация растяжения длины Ti-B-связи поверхностного слоя, которая составляет 2,5 % относительно длины связи для чистой поверхности 2D TiB₂(0001). Для позиции А характерна наименьшая дистанция между О и поверхностным атомом Ті (d_{O-Ti} = 1,70 Å) по сравнению с адсорбированными N и W на 1,8 % и 28,5 % соответственно. При длине связи $d_{O-T_i} = 1,70$ Å могут протекать процессы хемосорбции, сопровождающиеся образованием соединения типа TiO_x. В конфигурации В атом кислорода занимает fcc позицию, образуя три Ті-О-связи длиной $d_{Ti-N} = 1,97$ Å. В конфигурации С азот образует две Ті-Освязи длиной $d_{T_{l-N}} = 1,88$ Å, занимая позицию мост. Следует отметить, что для позиций В и С длина связи между атомами азота и титана на 12% и 7 % соответственно больше, чем в позиции А. При нарушении стехиометрии по титану или бору длина связи d_{о-ті} возрастает (см. табл. 2). При наличии нестехиометрии в системе O/Ti_xB_{2-v}(0001) деформация длины Ti-B-связи поверхностного слоя имеет разный знак: деформация сжатия 0,3 % при наличии вакансии титана; деформации растяжения 2,1 % при наличии вакансии бора.

Энергия адсорбции атомов W, N и O на поверхности TiB₂(0001)

Для тестирования атомной структуры ультратонких пленок диборида титана были изучены вертикальные дистанции между верхними тремя атомными плоскостями (табл. 3). Рассчитанные нами дистанции $d_1 = 1,542$ Å и $d_2 = 1,630$ Å хорошо согласуются с данными работы [10], что указывает на адекватность изучаемой здесь атомной структуры. На первом этапе была рассчитана энергия адсорбции атомов W (N, O) на недефектной поверхности TiB₂(0001) для трех связывающих позиций A, B и C. Предметом изучения являлось установление наиболее стабильной связывающей позиции атомов W (N, O) на идеальной поверхности.

Таблица 3. Вертикальная дистанция между адсорбатом и первым слоем титана d_0 , первым слоем титана и слоем бора d_1 , слоем бора и третьим слоем титана d_2 , энергия адсорбции атома W (N, O) для связывающих позиций на поверхностях TiB₂(0001) и Ti_xB_{2-y}(0001)

Конфигурации	Позиция	d_o ,	d_1 ,	d_2 ,	E_{ads} ,
	адсорбата	Å	Å	Å	eV/atom
TD			1.542	1 (20	
11B ₂	-	-	1.542,	1.630,	-
			1.538 [10]	1.625 [10]	
W/TiB ₂		2.032	1.565	1.628	-7.81
O/TiB ₂	А	1.760	1.569	1.636	-8.71
N/TiB ₂		1.664	1.563	1.631	-7.78
W/TiB ₂		1.844	1.571	1.629	-8.60
O/TiB ₂	В	1.115	1.567	1.622	-11.05
N/TiB ₂		1.054	1.587	1.626	-11.14
W/TiB ₂		1.864	1.573	1.630	-8.59
O/TiB ₂	С	1.242	1.569	1.627	-10.54
N/TiB ₂		1.199	1.580	1.628	-10.46
W/Ti _x B ₂		-0.117	1.566	1.618	-11.95
O/ Ti _x B ₂	А	1.033	1.537	1.624	-5.25
N/ Ti _x B ₂		0.919	1.553	1.615	-4,34
O/ Ti _x B _{2-y}	R	-	1.548	1.651	-6.06
N/ Ti _x B _{2-y}		-	1.542	1.629	-9.19

Результаты расчетов энергии адсорбции приведены в табл. 3. Здесь же указаны вертикальные дистанции между адсорбатом и верхними слоями атомов. Анализ табл. 3 позволяет отметить, что в позициях В и С атом W наиболее устойчив, имеет три и две W-Ti-связи соответственно (при длине связи $d_{W-T_i} = 2,51$ Å и 2,40 Å) металлического типа и характеризуется энергией адсорбции E_{ads}= -8,60 эВ/атом. В позиции А энергия адсорбции атома W на TiB₂(0001) на 9,2 % меньше, чем в позициях В и С, при длине связи d_{W-Ti} = 2,19 Å. Величина E_{ads} = -8,60 эВ/атом дает нам основание для предположения о том, что позиции В и С могут быть центрами нуклеации атомов W в системе W/TiB₂(0001) на ранних стадиях. Менее устойчивой, на наш взгляд, является связывающая позиция А с энергией адсорбции E_{ads} = -7,81 эВ/атом и одной W-Ti-связью. Однако, эта величина E_{ads}, на наш взгляд, может оказаться достаточной для образования прочной W-Ti-связи, что будет рассмотрено ниже. Энергия адсорбции атомов N и O на стехиометрической поверхности TiB₂(0001) имеет наибольшее значение для связывающих позиций В и С, составляя величину порядка -11 эВ/атом. На позиции А энергия адсорбции атома кислорода превышает E_{ads} атомов W и N на 12%.

На втором этапе изучена энергия адсорбции атомов W (N, O) на дефектной поверхности в системе R/Ti_xB_{2-y}(0001). Как показано на рис. 2с атомы W занимают положения вакансии Ti. Данная конфигурация характеризуется самым высоким значением энергии адсорбции E_{ads} = -11,95 эВ/атом в настоящем рассмотрении. Таким образом, понижение симметрии решетки, связанное с образованием Ti-вакансии и ее замещением атомом W, приводит к увеличению энергии адсорбции в 1,5 раза. Величина E_{ads} дает нам основание для предположения о том, что позиция A может быть центром нуклеации атомов W в системе W/Ti_xB₂(0001). При наличии вакансии Ti в системах O/Ti_xB₂(0001) и N/Ti_xB₂(0001) энергия адсорбции мала, при длине

связей $d_{O-Ti} = 3,20$ Å и $d_{N-Ti} = 2.34$ Å. Иная ситуация наблюдается при наличии вакансии бора: атомы О и N замещают бор во втором поверхностном слое в результате протекания механизма диффузии. Энергия адсорбции N и O в этих системах составила -9,19 эВ/атом и -6,06 эВ/атом соответственно, т.е. механизмы хемосорбции в системе N/TiB_{2-y}(0001) протекают в 1,5 раза интенсивнее, чем в системе O/TiB_{2-y}(0001).

Электронная структура систем R/TiB₂(0001)

Для понимания природы хемосорбции связи адсорбата в системах $R/TiB_2(0001)$ и $R/Ti_xB_{2-v}(0001)$ (R = W, N, O) мы рассчитали зонную структуру для разных конфигураций этих систем после релаксации. Типовая зонная структура этих систем, представленная на рис. 3, обнаруживает атомной зависимость OT локальной структуры, присущей каждой конфигурации, и соответствует металлическому типу. Мы рассчитали электронную структуру (ЭС) для четырех различных конфигураций систем $W/TiB_2(0001)$ и $W/Ti_xB_2(0001)$ после релаксации, представленная на рис. 3. Для ЭС в позиции А, представленной на рис.3а, отмечается образование гибридизации 2p-орбиталей атомов бора с 3d-орбиталями атомов титана и 5d-орбиталями вольфрама. На это указывает совпадение по энергии пиков заполненных состояний атомов B, Ti и W в интервале энергий –(0,2÷2,4) эВ. Пики с энергиями -0,17 эВ и -0,99 эВ около уровня Ферми образованы вкладами занятых p,d-состояний электронов атома W и d-состояний электронов атомов Ті. Для сравнения на рис. Зс приведена зонная структура адсорбированной системы W/Ti_xB₂(0001), в которой атом вольфрама замещает вакансионную позицию. На кривой полной DOS (рис. 3с) расположены около уровня Ферми два пика с энергиями -0,05 эВ и -0,56 эВ, которые образованы вкладами занятых p,d-состояний электронов атома W и d-состояний электронов атомов Ті. Электронная структура конфигурации с атомом W в позиции fcc представлена на рис. 3b и характеризуется наличием

пиков парциальных электронных плотностей (DOS) вольфрама в интервале энергий –(0,2÷1,9) эВ.

Рис. 3. Зонная структура, полная и парциальные DOS атомов ближайшего окружения (к адсорбату) в системах W/TiB₂(0001) и W/Ti_xB₂(0001) для адсорбционных моделей в связывающих позициях A (a, c), B (b) и C (d)

Энергетическое положение этих пиков W5d DOS совпадает с положением пиков Ti3d DOS, что указывает на наличие металлической W-Ti-связи. Для связывающих состояний имеет место слабая связь, характеризуемая гибридизацией Ti3d-B2p-орбиталей в интервале энергий -(1.2÷4.0) эВ и определяющая основные свойства поверхности систем W/Ti_xB₂(0001). Электронная структура конфигурации с атомом W в позиции мост представлена на рис. 3d и характеризуется наличием пиков парциальных DOS вольфрама в интервале энергий –(0,2÷1,9) эВ. Совпадение по энергии отмеченных пиков с аналогичными пиками электронных состояний Ti

указывает на насыщенность W-Ti-связи. Для ЭС системы N/TiB₂(0001) в позиции А отметим наличие гибридизации 2р-орбиталей атомов азота и бора с 3d-орбиталями атомов титана в интервале энергий –(0,03÷2,5) эВ. ЭС с fcc азотом В позиции характеризуется наличием основных пиков парциальных DOS бора, азота и титана в интервале энергий –(2,0÷4,5) эВ. Отметим гибридизацию Ті3d-В2р-N2р-орбиталей в данном интервале энергий, что указывает на наличие химической Ті-N-связи. Для ЭС системы N/TiB₂(0001) в позиции С отмечается локализация электронных 2р-состояний N и 3d-состояний Ti с энергиями -2,6 эВ и -3,1 эВ. При нарушении нестехиометрии по Ті или В наблюдается кардинальная перестройка электронного спектра, обусловленная реконструкцией локальной атомной структуры. Если при наличии вакансии Ті атом N локализуется на дистанции $d_0 = 0,92$ Å от поверхности (0001) TiB₂, то в случае вакансии бора атом N занимает ее положение во втором слое. Здесь также изучена ЭС пяти различных конфигураций систем O/TiB₂(0001) и O/Ti_xB_{2-y}(0001) после релаксации, которая обнаруживает зависимость от локальной атомной структуры. Для ЭС системы O/TiB₂(0001) в позиции А отметим наличие гибридизации 2p-орбиталей атомов О и В с 3d-орбиталями атомов Ті в интервале энергий -(2,4÷3,5) эВ. Для электронной структуры системы с О в позиции fcc характерен сдвиг на 5,2 эВ О2р-орбиталей в область малых энергий. О2р-орбитали образуют совместно с Ti3d- и В2р-орбиталями гибридизованные состояния в интервале энергий –(4,0÷6,0) эВ. Отмеченное коррелирует с высоким значением энергии адсорбции E_{ads} = -11,05 эВ/атом в данном конфигурации. Для ЭС системы O/TiB₂(0001) в позиции С отметим локализацию электронных 2р-состояний О и В с 3d-состояниями Ті в $-(4,0\div5,0)$ интервале энергий эB, обуславливает образование что гибридизованных орбиталей. Энергия связи атома О в системе O/TiB₂(0001) составляет 4,6 эВ, что коррелирует с высоким значением энергии адсорбции

 E_{ads} = -10,54 эВ/атом в данной конфигурации. Для связывающих состояний В и Ті имеет место небольшое усиление Ті-О-взаимодействия при длине связи d_{Ti-O} = 1,88 Å, что коррелирует с образованием гибридизации Ti3d-B2p-орбиталей для энергий –(0,7-5,0) эВ. При наличии вакансии Ті атом О локализуется на дистанции d_0 = 1,03 Å от верхней поверхности (0001) TiB₂, а в случае вакансии В атом О занимает ее положение во втором слое. В данной конфигурации О2p-орбитали лежат в интервале энергий -(0,2÷2,5) эВ. Отмеченное коррелирует с низким значением энергии адсорбции кислорода E_{ads} = -5,25 эВ/атом в данной конфигурации. Для ЭС системы O/TiB_{2-y}(0001) с вакансией бора характерно ослабление Ti-O-связи и усиление В-O-связи.

Заключение

Используя первопринципные расчеты на основе теории функционала плотности мы изучили энергию адсорбции вольфрама (азота, кислорода), локальную атомную структуру, термодинамические и электронные свойства нестехиометрических систем $R/Ti_xB_{2-y}(0001)$ (R=W, N, O) для разных реконструкций поверхности в сопоставлении со стехиометрическими системами $R/TiB_2(0001)$. Нами рассмотрены более тридцати реконструкций поверхности диборида титана, обусловленных схемой расположения на ней адсорбата. Впервые показано, что адсорбция вольфрама (азота, кислорода) на малодефектных поверхностях $Ti_xB_{2-y}(0001)$ в разных связывающих позициях приводит к существенной перестройке локальной атомной структуры и зонного энергетического спектра. Дальнейшие исследования процессов хемосорбции рассмотренных систем обеспечат прогресс в атомистическом понимании механизмов формирования наноструктур на поверхности керамик после воздействия лазерной плазмы.

Литература

1. Bates S.E., et al. Synthesis of titanium boride TiB_2 nanocrystallites by solution-phase processing // Journal of Materials Research. 1995. No10(10). pp. 2599-2612.

Basu B., Raju G., and Suri A. Processing and properties of monolithic TiB₂ based materials // International Materials Reviews. 2006. №51(6). pp. 352-374.

3. Mayrhofer P., et al. Self-organized nanocolumnar structure in superhard TiB₂ thin films // Applied Physics Letters. 2005. №86(13). p. 131909.

4. Лянгузов Н.В., Дрюков А.Г., Кайдашев Е.М.,. Галий И.В. Получение и исследование морфологии массивов микро- и наностержней ZnO на подложках Si с пленочным подслоем ZnO // Инженерный вестник Дона, 2011, №4 URL: ivdon.ru/ru/magazine/archive/n4y2011/522.

5. Несветаев Д.Г., Кайдашев Е.М., Пузиков А.С., Импульсное лазерное напыление ZnO наноструктур // Инженерный вестник Дона, 2013, №4 URL: ivdon.ru/ru/magazine/archive/n4y2013/1885.

6. Topor L. and Kleppa O.J., Enthalpies of formation of first-row transitionmetal diborides by a new calorimetric method // The Journal of Chemical Thermodynamics. 1985. №17(11). pp. 1003-1016.

7. P. Giannozzi, et al. QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials // J. Phys.: Condens. Matter. 2009. №21. p. 395502.

8. Ruberto C. and Lundqvist B.I., Nature of adsorption on TiC (111) investigated with density-functional calculations // Physical Review B. 2007. №75(23). p. 235438.

9. Löwdin P.-O., On the Nonorthogonality Problem*, in Advances in Quantum Chemistry. Academic Press. 1970. pp. 185-199.

10. Han Y., et al. Electronic and bonding properties of TiB₂ // Journal of Alloys and Compounds. 2007. №438. pp. 327-331.

11. Clementi E., Raimondi D., Reinhardt W. Atomic screening constants from SCF functions. II. Atoms with 37 to 86 electrons // The Journal of Chemical Physics, 1967. №47(4). pp. 1300-1307.

Magnuson M., et al. Bonding mechanism in the nitrides Ti₂AlN and TiN: an experiment and theoretical investigation // Physical Review B. 2007. №76.
p. 195127

13. Ilyasov V.V., et al. Adsorption of atomic oxygen, electron structure and elastic moduli of TiC(0 0 1) surface during its laser reconstruction: Ab initio study // Appl. Surf. Sci. 2015. №351. pp. 433-444.

14. Shuyin Y., et al. Phase stability, chemical bonding and mechanical properties of titanium nitrides: a first-principles study // Phys. Chem. Chem. Phys., 2015. №17. pp. 11763-11769.

15. Локтев Д., Ямашкин Д. Основные виды износостойких покрытий // Наноиндустрия. 2007. №5. С. 24-30.

References

1. Bates S.E., et al. Journal of Materials Research. 1995. №10(10). pp. 2599-2612.

2. Basu B., Raju G., and Suri. A. International Materials Reviews. 2006. №51(6). pp. 352-374.

3. Mayrhofer P., et al. Applied Physics Letters. 2005. №86(13). p. 131909.

4. Ljanguzov N.V., Drjukov A.G., Kajdashev E.M., Galij I.V. Inzhenernyj vestnik Dona (Rus), 2011, №4. URL: ivdon.ru/ru/magazine/archive/n4y2011/522.

5. Nesvetaev D.G., Kajdashev E.M., Puzikov A.S. Inzhenernyj vestnik Dona (Rus), 2013, №4. URL: ivdon.ru/ru/magazine/archive/n4y2013/1885.6.

6. Topor L., Kleppa O.J. The Journal of Chemical Thermodynamics. 1985. №17(11). pp. 1003-1016.

7. P. Giannozzi, et al. J. Phys.: Condens. Matter. 2009. No21. p. 395502 .

8. Ruberto C. and Lundqvist B.I. Physical Review B. 2007. №75(23). p. 235438.

9. Löwdin P.-O., Advances in Quantum Chemistry. Academic Press. 1970. pp. 185-199.

10. Han Y., et al. Journal of Alloys and Compounds. 2007. №438. pp. 327-331.

11. Clementi, E., D. Raimondi, and W. Reinhardt. The Journal of Chemical Physics, 1967. №47(4). pp. 1300-1307.

12. Magnuson, M. Physical Review B. 2007. №76. p. 195127

13. Ilyasov V.V., et al. Appl. Surf. Sci. 2015. №351. pp. 433-444.

14. Shuyin Yu, et al. Phys. Chem. Chem. Phys., 2015. №17. pp. 11763-11769.

15. Loktev, D. Nanoindustrija (Rus). 2007. №5. pp. 24-30.6.