

Расчет сферических оболочек на действие кольцевых нагрузок

А.Я. Астахова, Р.Э. Ниязов

Национальный исследовательский Московский государственный строительный университет

Аннотация: В настоящее время для реализации сложных расчетов широко используются численные методы. Актуальной задачей является проверка правильности результатов численного расчета. Достоверность результатов можно подтвердить при определении напряженно-деформированного состояния различными методами. В данной работе представлены результаты расчета тонких изотропных кольцевых сферических оболочек постоянной толщины с углом полураствора в пределах 90 – 170 градусов двумя методами. Рассматриваются результаты решения численными системы дифференциальных уравнений общей моментной теории оболочек с применением системы компьютерной математики (Maple 2017) и метода конечных элементов (МКЭ). Приведенные примеры показывают, что результаты расчета с помощью выбранного конечного элемента КЭ-44 совпадают с точностью до (10 - 15)% для оболочек с углом полураствора до 120 градусов. При увеличении угла до 170 градусов разница значений функций становится значительной. Приведены примеры расчета кольцевых сферических оболочек под действием одной и трех кольцевых нагрузок.

Ключевые слова: упругая, сферическая оболочка, численный метод, система компьютерной математики, метод конечных элементов.

В настоящее время элементы строительных конструкций в виде стержней, плит и оболочек широко применяются при создании каркасов зданий И сооружений. Методы определения ИХ напряженнодеформированного состояния имеют большое прикладное значение для обеспечения прочности отдельных надежной работы элементов И В строительстве широко конструкции В целом. применяются пространственные конструкции в виде гладких сферических оболочек. Повышение эффективности применения и реализации тонкостенных конструкций неразрывно связано с совершенствованием методов расчета оболочек. Используемые в теории расчета оболочек аналитические и численные методы базируются на работах известных ученых [1 – 3]. Существуют различные подходы в теории к выводу разрешающих уравнений, например, вариационные методы, рассматриваемые зарубежными

[4, 5] и отечественными исследователями [6, 7]. Достоверность результатов подтверждается при определении напряженно-деформированного состояния различными методами.

В настоящей работе представлены результаты расчета тонких изотропных кольцевых сферических оболочек постоянной толщины с углом полураствора β_0 в пределах от 90° до 170° двумя численными методами. Рассматриваются результаты решения системы дифференциальных уравнений общей моментной теории оболочек (1) с применением СКМ–системы компьютерной математики (Maple 2017) [8] и метода конечных элементов (МКЭ) ПК ЛИРА-САПР 2016 [9].

Система разрешающих уравнений рассматривалась в векторноматричной форме [10] относительно коэффициентов ряда Фурье неизвестных функций:

$$\frac{d\bar{T}}{ds} = A(s)\bar{T} + \bar{q}(s),$$
(1)
rge: $\bar{T} = (T_{rk}, T_{zk}, S_k, M_{sk}, u_{rk}, u_{zk}, v_k, \vartheta_k),$

$$A(s) = ||a_{ij}||, \bar{q} = (-q_{rk}, -q_{zk}, -q_{\theta k}, 0, 0, 0, 0, 0).$$

Вывод полной системы (1) осуществлен на основании гипотез Кирхгофа-Лява, уравнений равновесия, геометрических соотношений и соотношений упругости линейной теории [10]. Неизвестными функциями в системе уравнений являются: радиальное и осевое усилия – T_r , T_z , обобщенное тангенциальное усилие – S, радиальное и осевое перемещения – u_r , u_z , окружное перемещение – v, угол поворота сечения – ϑ . Правая часть системы содержит проекции внешней нагрузки. Все функции напряженно-деформированного состояния (далее НДС) и нагрузки разложены в ряды Фурье по окружной координате. Рассматривается симметричная нагрузка соответствующая первому слагаемому k = 1 ряда Фурье.

Решается задача Коши, т.е. задаются граничные условия на противоположных краях оболочки при s = 0 и s = 1 ($s = s_i/s_0$ – безразмерная переменная вдоль меридиана, отнесенная к длине дуги меридиана s_0). При жестком защемлении компоненты перемещений и угол поворота нормали равны нулю. При шарнирном – компоненты перемещений и меридиональный изгибающий момент приравниваются к нулю.

Реализация численных расчетов системы осуществлялась на языках *Maple* и МКЭ. С помощью СКМ задачи решаются в диалоговом (интерактивном) режиме. Все СКМ имеют развитый язык программирования, который включает типовые средства программирования, такие как управляющие структуры, циклы, операторы ввода/вывода и т.д.

Метод конечных элементов (МКЭ) основан на аппроксимации любой непрерывной функции дискретной моделью, которая строится на множестве кусочно-непрерывных функций, определенных на конечном числе подобластей. Общий алгоритм расчета МКЭ:

1. Дискредитация. Рассматриваемая область разбивается на конечные элементы, взаимодействующие через узловые параметры (степени свободы).

2. Выбор узловых неизвестных. Число степеней свободы определяется вариантом решаемой задачи.

3. Построение матрицы жесткости и вектора внешней нагрузки. Перемещения внутренней точки конечного элемента (КЭ) определяются посредством узловых перемещений через аппроксимирующие функции. Составляются матрицы жесткости и векторов внешней нагрузки дискретного элемента.

4. Решение системы уравнений равновесия. Общая система уравнений равновесия всей конечно-элементной модели является системой алгебраических уравнений, которые имеют ленточную структуру. При

решении линейных задач используются прямые методы: Гаусса, разложения Холесского, блочного разложения.

5. Вычисление значений перемещений внутренних точек КЭ через значения узловых параметров. Узловые компоненты вектора перемещений будут получены в результате решения системы алгебраических уравнений. Поиск перемещений внутренней точки КЭ осуществляется с помощью узловых значений перемещений посредством аппроксимирующих функций.

Расчет проводился в ПК ЛИРА-САПР 2016 (рис. 1) при использовании конечного элемента КЭ-44 (Универсальный четырехугольный КЭ оболочки).

Рис. 1. – Схема универсального четырехугольного КЭ оболочки

Используемый КЭ предназначен для прочностного расчета тонких пологих оболочек. Приведенные примеры показывают, что результаты расчета с помощью выбранного конечного элемента КЭ-44 совпадают с точность до разницы в 10 – 15% для углов β_0 меньше 120°.

При увеличении угла до величины 170° разница представленных функций является значительной (рис. (2 – 10)).

Изменения внутренних усилий и перемещений представлены на меридионального изгибающего момента M_s , осевой u_7 примерах И радиальной *u_r* составляющих вектора перемещений в середине меридиана для кольцевых сферических оболочек. Отклонение верхнего контура от вертикальной оси $d = 5^{\circ}$ (рис.2). В примерах условия опирания по верхнему и нижнему контурам приняты в форме заделка-заделка (обозначено z-z), а (обозначено Значения также шарнир-шарнир *s*-*s*). меридионального изгибающего момента при жестком защемлении показаны также на краях нижнего и верхнего контуров.

Рис. 2 – Расчетная схема задачи

Для сферической оболочки с отношением R/h = 100 (h = 1см) представлены следующие результаты табл. № (1 - 8), рис. (3 - 10). Действие одной вертикальной составляющей кольцевой нагрузки равной q = 2 кH/см² и q = 3 кH/см² на отрезке вдоль меридиана $s_p = 0.1$ в оболочках с углом полураствора от 90° до 170°. Изменение осевого перемещения u_z в середине меридиана представлено в табл. № 1, рис. 3.

Таблица № 1

$\beta_0,$ $R/h = 100$	Maple [мм], $q = 2 \ \kappa H/cm^2$	МКЭ [мм], q = 2 кН/см ²	Maple [мм], $q = 3 kee ext{ кH/cm}^2$	МКЭ [мм], q = 3 кН/см ²
90	-3,950	-4,323	-5,920	-6,485
100	-3,965	-4,537	-5,938	-6,805
110	-4,030	-4,950	-6,045	-7,430
120	-4,253	-5,760	-6,380	-8,640
130	-4,650	-7,300	-6,990	-10,950
140	-5,256	-10,206	-7,880	-15,250
150	-6,006	-16,960	-9,010	-26,440
160	-6,950	-33,305	-10,430	-49,960
170	-8,450	-72,065	-12,670	-108,098

Перемещения u_z в точке s = 1/2, $s_p = 0.1$ для $\beta_0 = (90^\circ - 170^\circ)$ при *z-z*

Рис. 3. – Перемещения u_z в точке s = 1/2 для $\beta_0 = (90^\circ - 170^\circ)$ при *z-z*

Показано изменение радиального перемещения u_r в середине меридиана для углов полураствора $\beta_0 = (90^\circ - 170^\circ)$ табл. № 2, рис. 4.

$\beta_0,$ $R/h = 100$	Maple [мм], $q = 2 \ \kappa H/cm^2$	МКЭ [мм], $q = 2 \ \kappa H/cm^2$	Maple [мм], $q = 3 ext{ кH/cm}^2$	МКЭ [мм], $q = 3 \text{ кH/cm}^2$
90	-2,862	-2,560	-4,290	-3,840
100	-2,752	-2,512	-4,126	-3,770
110	-2,430	-2,300	-3,650	-3,450
120	-1,910	-1,920	-2,877	-2,880
130	-1,270	-1,410	-1,880	-2,110
140	-0,543	-0,755	-0,843	-1,177
150	0,033	-0,013	0,053	-0,019
160	0,357	0,304	0,537	0,457
170	0,000	0,000	-0,010	0,000

Перемещения u_r в точке s = 1/2, $s_p = 0.1$ для $\beta_0 = (90^\circ - 170^\circ)$ при *z-z*

Рис. 4. – Перемещения u_r в точке s = 1/2 для $\beta_0 = (90^\circ - 170^\circ)$ при *z-z*

Далее показано изменение меридионального изгибающего момента M_s в трех точках: в середине меридиана и на опорах при жестком защемлении по верхнему и нижнему контурам (обозначение *z*-*z*) табл. № (3 – 5), рис. (5 – 7). Таблица № 3

$\beta_0,$ $R/h = 100$	<i>Maple</i> [кН*см/см], q = 2 кН/см ²	$MK\Im$ [KH*cm/cm], $q = 2 \text{ KH/cm}^2$	<i>Maple</i> [кН*см/см], q = 3 кН/см ²	$MK\Im$ [$\kappa H^* cm/cm$], $q = 3 \kappa H/cm^2$
90	13,524	12,400	20,265	18,636
100	11,613	10,635	17,432	15,945
110	9,597	8,775	14,364	13,200
120	7,623	6,940	11,481	10,412
130	5,712	5,195	8,652	7,790
140	4,043	3,485	6,061	5,223
150	2,436	2,015	3,780	3,018
160	1,124	0,924	1,848	1,381
170	0,000	0,000	0,000	0,000

Рис. 5. – Момент M_s в точке s = 1/2 для $\beta_0 = (90^\circ - 170^\circ)$ при *z-z*

$\beta_0, R/h = 100$	<i>Maple</i> [кН*см/см], q = 2 кН/см ²	МКЭ [кH*см/см], q = 2 кH/см ²	<i>Mapl</i> е [кН*см/см], q = 3 кН/см ²	MKЭ [кH*см/см], q = 3 кH/см ²
90	8,560	6,910	12,839	10,400
100	10,290	8,040	15,441	12,100
110	12,558	9,730	18,824	14,600
120	15,372	12,400	23,037	18,600
130	18,501	16,800	27,951	25,100
140	22,155	24,150	33,243	36,200
150	26,250	41,650	39,270	62,450
160	33,600	85,150	50,400	127,700
170	67,662	200,950	101,430	301,150

Рис. 6. – Момент M_s в точке s = 0 для $\beta_0 = (90^\circ - 170^\circ)$ при *z-z*

ß	Maple	МКЭ	Maple	МКЭ
$P_{0}, P_{1} = 100$	[кН*см/см],	[кН*см/см],	[кН*см/см],	[кН*см/см],
Nn = 100	$q = 2 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$	$q = 3\kappa H/cm^2$	$q = 3 \ \kappa H/cm^2$
90	-4,248	-6,760	-6,374	-10,100
100	-9,345	-9,480	-14,007	-14,200
110	-16,023	-12,800	-24,045	-19,200
120	-24,423	-17,100	-36,540	-25,700
130	-34,230	-23,200	-51,261	-34,800
140	-44,310	-33,400	-66,570	-50,100
150	-53,550	-55,400	-80,220	-82,550
160	-60,900	-99,700	-91,350	-149,550
170	-67,620	-200,950	-100,800	-301,150

Момент M_s в точке $s = 1$.	, $s_p = 0.1$ для $\beta_0 = 0.1$	$(90^{\circ} - 170^{\circ})$) при <i>z-z</i>
--------------------------------	-----------------------------------	------------------------------	------------------

Рис. 7. – Момент M_s в точке s = 1 для $\beta_0 = (90^\circ - 170^\circ)$ при *z-z*.

Далее представлены результаты для этих же функций при шарнирном опирании по верхнему и нижнему контурам (обозначение *s*-*s*) табл. \mathbb{N} (6 – 8), рис. (8 – 10).

$\beta_0,$ R/h = 100	Maple [MM], $a = 2 \text{ kH/cm}^2$	MK \Im [MM], $a = 2 \kappa H/cm^2$	Maple [MM], $a = 3 \text{ kH/cM}^2$	MK \Im [MM],
$\frac{10n - 100}{00}$	q = 2 KH/CM	q = 2 KH/CM	q = 3 KH/CM	q = 3 KH/CM
90	-4,005	-4,422	-0,00	-0,033
100	-4,016	-4,665	-6,03	-6,997
110	-4,123	-5,131	-6,18	-7,697
120	-4,37	-6,035	-6,54	-9,052
130	-4,8	-7,763	-7,19	-11,645
140	-5,4	-11,201	-8,107	-16,802
150	-6,17	-19,363	-9,255	-29,045
160	-7,12	-41,313	-10,68	-61,97
170	-8,63	-102,798	-12,95	-154,197

β ₀ ,	Maple [мм],	МКЭ [мм],	Maple [мм],	МКЭ [мм],
<i>R</i> / <i>h</i> = 100	$q = 2 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$	$q = 3 ext{ \kappaH/cm}^2$	$q = 3 \ \kappa H/cm^2$
90	-2,834	-2,55	-4,25	-3,824
100	-2,71	-2,495	-4,07	-3,743
110	-2,38	-2,273	-3,5516	-3,41
120	-1,845	-1,89	-2,78	-2,83
130	-1,175	-1,362	-1,773	-2,043
140	-0,481	-0,684	-0,73	-1,026
150	0,112	0,084	0,17	0,126
160	0,413	0,435	0,61	0,652
170	0	0	0	0

Перемещения u_r в точке s = 1/2, $s_p = 0.1$ для $\beta_0 = (90^\circ - 170^\circ)$ при *s-s*

ß	Maple	МКЭ	Maple	МКЭ
$\beta_0,$	[кН*см/см],	[кН*см/см],	[кН*см/см],	[кН*см/см],
N/n = 100	$q = 2 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$	$q = 3 \ \kappa H/cm^2$	$q = 3 \ \kappa H/cm^2$
90	13,5135	12,4	20,181	18,6355
100	11,592	10,635	17,325	15,95
110	9,639	8,775	14,322	13,2
120	7,644	6,94	11,424	10,405
130	5,691	5,195	8,5911	7,79
140	4,0005	3,485	5,964	5,225
150	2,436	2,015	3,675	3,02
160	1,1865	0,92	1,638	1,3805
170	0	0	0	0

Момент M_s в точке $s =$	$1/2, s_p =$	0.1 для Во	$_0 = (90^\circ -$	170°)	при s-s
----------------------------	--------------	------------	--------------------	-------	---------

Рис. 10. – Момент M_s в точке s=1/2 для $\beta_0 = (90^\circ - 170^\circ)$ при *s-s*

Рассмотрим действие на кольцевую сферическую оболочку трех кольцевых нагрузок (рис. 11) равных по величине направленных вниз параллельно оси O_z и распределенных на одинаковых отрезках вдоль меридиана $s_p = 0.1$.

Ниже представлены значения осевых u_z и радиальных u_r перемещений, меридионального изгибающего момента M_s в точке s = 0.5 для оболочек с отношение радиуса к толщине R/h = (200 - 25) табл. № (9 – 28), рис. (12 – 31).

Изменения осевых перемещений *u*_z при жестком защемлении по контурам (*z-z*) представлено в табл. № (9 – 12) и на рис. (12 – 15).

Таблица № 9

Перемещения
$$u_z$$
 в точке $s = 1/2$, для $\beta_0 = (90^\circ - 130^\circ)$ и $R/h = 200$ при *z-z*

β ₀ ,	Maple [мм],	МКЭ [мм],	Maple [мм],	МКЭ [мм],
R/h = 200	$q = 3 \ \kappa H/cm^2$	$q = 3 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$
90	-29,520	-33,186	-19,700	-22,124
100	-32,190	-39,907	-21,450	-26,605
110	-35,750	-51,214	-23,850	-34,140
120	-40,900	-66,420	-27,300	-44,280
130	-47,786	-94,395	-31,880	-62,930

Рис. 12. – Перемещения *u*_z в точке *s* = 1/2, β₀ = (90° − 130°), *R/h* = 200 при *z*-*z* Таблица № 10

β ₀ ,	Maple [мм],	МКЭ [мм],	<i>Maple</i> [мм],	МКЭ [мм],
R/h = 100	$q = 3 \ \kappa H/cm^2$	$q = 3 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$
90	-6,010	-7,305	-4,000	-4,870
100	-6,990	-8,780	-4,661	-5,850
110	-8,150	-11,050	-5,430	-7,370
120	-9,600	-14,960	-6,408	-9,976
130	-11,450	-21,350	-7,632	-14,210

Перемещения u_z в точке s = 1/2, для $\beta_0 = (90^\circ - 130^\circ)$ и R/h = 100 при *z-z*

Рис. 13. – Перемещения u_z в точке s = 1/2, $\beta_0 = (90^\circ - 130^\circ)$ и R/h = 100 при *z-z*

β ₀ ,	<i>Maple</i> [мм],	МКЭ [мм],	<i>Maple</i> [мм],	МКЭ [мм],
R/h = 50	$q = 3 \ \kappa H/cm^2$	$q = 3 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$
90	-1,192	-1,498	-0,800	-1,000
100	-1,454	-1,741	-0,970	-1,160
110	-1,783	-2,370	-1,188	-1,582
120	-2,188	-3,371	-1,460	-2,250
130	-2,680	-4,750	-1,780	-3,170

Перемещения u_z в точке s = 1/2, для $\beta_0 = (90^\circ - 130^\circ)$ и R/h = 50 при *z-z*

Рис. 14. – Перемещения *u*_z в точке *s* = 1/2, β₀ = (90° − 130°) и *R/h* = 50 при *z*-*z* Таблица № 12

$\frac{\beta_{0,}}{R/h} = 25$	Maple [мм], $q = 3 kee ext{ кH/cm}^2$	МКЭ [мм], $q = 3 \text{ кH/cm}^2$	Maple [мм], $q = 2 $ к H/cm^2	МКЭ [мм], $q = 2 \ \kappa H/cm^2$
90	-0,249	-0,291	-0,166	-0,194
100	-0,309	-0,372	-0,206	-0,249
110	-0,380	-0,482	-0,260	-0,321
120	-0,492	-0,691	-0,330	-0,461
130	-0,618	-0,966	-0,413	-0,644

Перемещения u_z в точке $s = 1/2$, для β_0	$B_0 = (90^\circ - 130^\circ)$) и $R/h = 25$ при <i>z-z</i>
---	--------------------------------	-------------------------------

Рис. 15. – Перемещения u_z в точке s=1/2, β₀ = (90° – 130°) и R/h = 25 при z-z
Радиальные перемещения u_r для оболочек с R/h = (200 – 25) в середине
меридиана показаны в табл. (13 – 16) и на рис. (16 – 19).

Перемещения u_r в точке $s = 1/2$ для β_0	$B_0 = (90^\circ -$	130°)) и <i>R</i> / <i>h</i> =	200 п	ри <i>z-z</i>
---	---------------------	-----------------	---------------------------	-------	---------------

β ₀ ,	Maple [мм],	МКЭ [мм],	Maple [мм],	МКЭ [мм],	
R/h = 200	$q = 3 \ \kappa H/cm^2$	$q = 3 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$	
90	-15,700	-13,750	-10,450	-9,166	
100	-14,286	-12,690	-9,500	-8,460	
110	-11,313	-9,800	-7,510	-6,532	
120	-7,070	-6,180	-4,680	-4,120	
130	-2,100	-2,087	-1,376	-1,392	

Рис. 16. – Перемещения u_r в точке s=1/2, $\beta_0 = (90^\circ - 130^\circ)$ и R/h = 200 при z-z

β ₀ ,	Maple [мм],	МКЭ [мм],	<i>Maple</i> [мм],	МКЭ [мм],
R/h = 100	$q = 3 \ \kappa H/cm^2$	$q = 3 \text{ kH/cm}^2$	$q = 2 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$
90	-2,507	-2,670	-1,670	-1,781
100	-2,370	-2,320	-1,585	-1,550
110	-1,882	-1,760	-1,260	-1,176
120	-1,071	-0,590	-0,720	-0,400
130	-0,074	0,393	-0,047	0,262

Перемещения u_r в точке s = 1/2 для $\beta_0 = (90^\circ - 130^\circ)$ и R/h = 100 при *z-z*

Рис. 17. – Перемещения u_r в точке s=1/2, $\beta_0 = (90^\circ - 130^\circ)$ и R/h = 100 при *z-z*

β ₀ ,	Maple [мм],	МКЭ [мм],	<i>Maple</i> [мм],	МКЭ [мм],
R/h = 50	$q = 3 \ \kappa H/cm^2$	$q = 3 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$
90	-0,327	-0,442	-0,220	-0,300
100	-0,272	-0,334	-0,183	-0,223
110	-0,174	-0,285	-0,116	-0,190
120	-0,021	-0,161	-0,013	-0,107
130	0,167	-0,003	0,111	-0,002

Перемещения u_r в точке s = 1/2 для $\beta_0 = (90^\circ - 130^\circ)$ и R/h = 50 при *z-z*

Рис. 18. – Перемещения *u*_r в точке *s*=1/2, β₀ = (90° − 130°) и *R/h* = 50 при *z*-*z* Таблица № 16

$\beta_{0,}$ $R/h = 25$	Maple [мм], $q = 3 ext{ кH/cm}^2$	МКЭ [мм], q = 3 кН/см ²	Maple [мм], $q = 2 ext{ кH/cm}^2$	МКЭ [мм], $q = 2 \ \kappa H/cm^2$
90	-0,054	-0,060	-0,036	-0,040
100	-0,030	-0,051	-0,020	-0,034
110	0,002	-0,036	0,001	-0,024
120	0,041	-0,015	0,027	-0,010
130	0,083	0,012	0,056	0,008

Перемещения u_r в точке $s = 1$	/2 для $\beta_0 = (90^\circ -$	– 130°) и <i>R/h</i> = 25 при <i>z-z</i>
-----------------------------------	--------------------------------	--

Рис. 19. – Перемещения u_r в точке s = 1/2, $\beta_0 = (90^\circ - 130^\circ)$ и R/h = 25 при *z-z*

Изменения меридионального изгибающего момента M_s для оболочек с R/h = (200 - 25) и углом полураствора в пределах $\beta_0 = (90^\circ - 130^\circ)$ в середине меридиана показаны в табл. (17 – 28) и на рис. (20 – 31) при опирании «заделка-заделка» (*z*-*z*).

Таблица № 17

Момент M_s в точке s = 1/2, для $\beta_0 = (90^\circ - 130^\circ)$ и R/h = 200 при *z-z*

β ₀ ,	Maple	МКЭ	Maple	МКЭ
R/h = 200	[кН*см/см],	[кН*см/см],	[кН*см/см],	[кН*см/см],

	$q = 3 $ к H/cm^2	$q = 3 ext{ кH/cm}^2$	$q = 2 \ \kappa H/cm^2$	$q = 2 $ к H/cm^2
90	37,118	27,000	24,780	18,050
100	29,400	21,750	19,740	14,350
110	22,596	15,700	14,973	10,460
120	16,422	11,015	11,025	7,345
130	11,403	7,000	7,623	4,670

Рис. 20. – Момент *M_s* в точке *s* = 1/2 для β₀ = (90° − 130°) и *R/h* = 200 при *z*-*z* Таблица № 18

Момент M_s в точке $s =$	1/2, для $\beta_0 =$	(90° – 130°) и	т <i>R/h</i> = 100 при <i>z-z</i>
----------------------------	----------------------	----------------	-----------------------------------

ß	Maple	МКЭ	Maple	МКЭ
$p_0,$ P/h = 100	[кН*см/см],	[кН*см/см],	[кН*см/см],	[кН*см/см],
K/n = 100	$q = 3 \ \kappa H/cm^2$	$q = 3 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$
90	20,895	16,600	13,923	11,050
100	18,648	13,800	12,600	9,200
110	15,666	10,960	10,500	7,305
120	12,548	7,385	8,400	4,925

Рис. 21. – Момент M_s в точке s=1/2 для $\beta_0 = 90^{\circ} \div 130^{\circ}$ и R/h = 100 при *z-z*

Момент M_s в точке s = 1/2, для $\beta_0 = (90^\circ - 130^\circ)$ и R/h = 50 при *z-z*

ß	Maple	МКЭ	Maple	МКЭ
$p_0, p_{lh} = 50$	[кН*см/см],	[кН*см/см],	[кН*см/см],	[кН*см/см],
K/n = 30	$q = 3 \ \kappa H/cm^2$	$q = 3 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$
90	8,190	8,730	5,460	5,870
100	8,253	6,935	5,502	4,620
110	7,791	6,250	5,166	4,165

120	6,888	5,190	4,578	3,455
130	5,628	3,790	3,755	2,525

Рис. 22. – Момент M_s в точке s = 1/2 для $\beta_0 = (90^\circ - 130^\circ)$ и R/h = 50 при *z-z*

ß	Maple	МКЭ	Maple	МКЭ
$p_0, p_{lh} = 25$	[кН*см/см],	[кН*см/см],	[кН*см/см],	[кН*см/см],
K/n = 23	$q=3 \text{ кH/cm}^2$	$q=3 \text{ кH/cm}^2$	$q=2$ к H/cm^2	q=2 кH/см ²
90	2,793	3,900	1,861	2,625
100	2,930	3,570	1,953	2,380

110	2,940	3,075	1,953	2,050
120	2,730	2,645	1,840	1,760
130	2,436	2,000	1,628	1,320

Рис. 23. – Момент *M_s* в точке *s* = 1/2 для β₀ = (90° − 130°) и *R/h* = 25 при *z*-*z* Таблица № 21

ß	Maple	МКЭ	Maple	МКЭ
$p_0, p_{lh} = 200$	[кН*см/см],	[кН*см/см],	[кН*см/см],	[кН*см/см],
R/n = 200	$q=3 \text{ кH/cm}^2$	$q=3 \ \kappa H/cm^2$	$q=2$ к H/cm^2	q=2 кH/см ²
90	71,400	48,150	47,670	32,100

100	81,900	60,100	54,600	40,100
110	95,676	73,900	63,840	49,250
120	112,287	88,300	74,865	59,500
130	130,830	111,200	87,150	74,150

Рис. 24. – Момент *M_s* в точке *s* = 0 для β₀ = (90° − 130°) и *R/h* = 200 при *z*-*z* Таблица № 22

Момент M_s в точке $s = 1$	0, для $\beta_0 =$	$(90^{\circ} - 130^{\circ})$) и <i>R/h</i> = 10	0 при <i>z-z</i>
------------------------------	--------------------	------------------------------	---------------------	------------------

0	Maple	МКЭ	Maple	МКЭ
$p_0, p_{lh} = 100$	[кН*см/см],	[кН*см/см],	[кН*см/см],	[кН*см/см],
R/n = 100	$q = 3 \ \kappa H/cm^2$	$q = 3 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$
90	37,464	26,700	24,990	17,800

100	42,000	37,600	28,056	25,100
110	48,300	49,300	32,130	32,900
120	56,217	63,600	37,485	42,400
130	65,520	82,300	43,680	54,900

Рис. 25. – Момент *M_s* в точке *s* = 0 для β₀ = (90° − 130°) и *R/h* = 100 при *z*-*z* Таблица № 23

ß	Maple	МКЭ	Maple	МКЭ
$p_0, p_{lh} = 50$	[кН*см/см],	[кН*см/см],	[кН*см/см],	[кН*см/см],
K/n = 50	$q = 3 \text{ kH/cm}^2$	$q = 3 \text{ kH/cm}^2$	$q = 2 \text{ kH/cm}^2$	$q = 2 \text{ kH/cm}^2$
90	18,165	8,070	12,096	5,375

	Момент M_s в точ	ике $s = 0$, для β	$B_0 = (90^\circ - 130^\circ)$) и <i>R/h</i> = 50 при <i>z-:</i>
--	--------------------	---------------------------	--------------------------------	------------------------------------

100	21,378	11,910	14,249	8,060
110	24,780	16,220	16,506	10,845
120	28,581	21,190	19,051	14,135
130	33,180	27,540	21,951	18,350

Рис. 26. –Момент *M_s* в точке *s* = 0 для β₀ = (90° − 130°) и *R/h* = 50 при *z*-*z* Таблица № 24

Момент M_s в точке $s = 0$), для β ₀ = (90° -	- 130°) и <i>R/h</i> = 2	25 при <i>z-z</i> .
------------------------------	--------------------------------	--------------------------	---------------------

Q	Maple	МКЭ	Maple	МКЭ
$p_0, p_{lh} = 25$	[кН*см/см],	[кН*см/см],	[кН*см/см],	[кН*см/см],
R/n = 23	$q = 3 \text{ kH/cm}^2$	$q = 3 \text{ kH/cm}^2$	$q = 2 \text{ kH/cm}^2$	$q = 2 \ \kappa H/cm^2$
90	7,812	4,530	5,208	3,025

100	10,038	6,605	6,686	4,405
110	12,306	9,070	8,190	6,025
120	14,700	12,280	9,765	8,175
130	17,094	16,400	11,403	10,955

Рис. 27. – Момент M_s в точке s = 0 для $\beta_0 = (90^\circ - 130^\circ)$ и R/h = 25 при *z-z*

	Момент M_s в точке $s =$	1, для	$\beta_0 = ($	(90° –	130°)	и <i>R</i> / <i>h</i> = 200 при <i>z</i> -	·Z
--	----------------------------	--------	---------------	--------	-------	--	----

β₀,	Maple	MKƏ	Maple	MKƏ
R/h = 200	$q = 3 \text{ kH/cm}^2$	$q = 3 \text{ kH/cm}^2$	$q = 2 \text{ kH/cm}^2$	$q = 2 \text{ kH/cm}^2$
90	-13,297	-98,800	-8,400	-65,500

100	-40,247	-101,600	-26,670	-67,700
110	-72,030	-109,050	-47,880	-72,550
120	-109,074	-121,250	-72,723	-80,650
130	-150,360	-143,600	-100,170	-95,900

Рис. 28. – Момент M_s в точке s = 1 для $\beta_0 = (90^\circ - 130^\circ)$ и R/h = 200 при *z-z*

ß	Maple	МКЭ	Maple	МКЭ
$p_0, p_{lh} = 100$	[кН*см/см]	[кН*см/см],	[кН*см/см],	[кН*см/см],
K/n = 100	$q = 3 \ \kappa H/cm^2$	$q = 3 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$
90	-2,793	-43,100	-1,863	-28,745

100	-15,645	-44,000	-10,500	-29,325
110	-32,130	-45,310	-21,420	-30,220
120	-51,450	-48,805	-34,230	-32,505
130	-72,240	-52,670	-48,300	-35,280

Рис. 29. – Момент *M_s* в точке *s* = 1 для β₀ = (90° − 130°) и *R/h* = 100 при *z*-*z* Таблица № 27

$\beta_0,$ $R/h = 50$	<i>Maple</i>	МКЭ	Maple	МКЭ
	[кН*см/см],	[кH*см/см],	[кH*см/см],	[кH*см/см],
	q = 3 кН/см ²	$q = 3 \text{ кH/см}^2$	q = 2 кH/см ²	q = 2 кH/см ²
90	-6,252	-25,800	-4,169	-17,200

Момент M_s в точке s = 1, для $\beta_0 = (90^\circ - 130^\circ)$ и R/h = 50 при *z-z*

100	-9,765	-28,000	-6,510	-18,625
110	-15,561	-30,600	-10,374	-20,405
120	-23,520	-35,250	-15,750	-23,510
130	-33,096	-39,900	-22,067	-26,600

Рис. 30. – Момент *M_s* в точке *s* = 1 для β₀ = (90° − 130°) и *R/h* = 50 при *z*-*z* Таблица № 28

ß	Maple	МКЭ	Maple	МКЭ
$p_0, R/h = 25$	[кН*см/см],	[кН*см/см],	[кН*см/см],	[кН*см/см]
Rm = 25	$q = 3 \text{ kH/cm}^2$	$q = 3 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$	$q = 2 \ \kappa H/cm^2$

90	-7,980	-12,385	-5,313	-8,290
100	-9,387	-14,515	-6,258	-9,500
110	-11,466	-16,650	-7,602	-11,085
120	-14,280	-20,505	-9,576	-13,670
130	-17,955	-24,000	-11,991	-16,070

Рис. 31. – Момент M_s в точке s = 1 для $\beta_0 = (90^\circ - 130^\circ)$ и R/h = 25 при *z-z*

Для кольцевых сферических оболочек с соотношением радиуса кривизны к толщине R/h = 200, для углов полураствора $\beta_0 = 90^\circ$ и 130° рис. (32 – 39), условиями опирания «заделка-заделка» (*z*-*z*) и «шарнир-шарнир» (*s*-*s*) при действии трех кольцевых нагрузок представлены эпюры меридиональных изгибающих моментов M_s и изополя МКЭ.

Рис. 32. – Эпюра моментов M_s , q=3 кH/см² для $\beta_0 = 90^\circ$ и R/h = 200 при *z-z*

Рис. 33. – Изополя моментов M_s , q=3 кH/см² для $\beta_0 = 90^{\circ}$ и R/h = 200 при *z-z*

Рис. 34. – Эпюра моментов M_s , q=3 кH/см² для $\beta_0 = 90^\circ$ и R/h = 200 при *s-s*

Рис. 35. – Изополя моментов M_s , $q = 3 \text{ кH/cm}^2$ для $\beta_0 = 90^\circ$ и R/h = 200 при *s-s*

Рис. 36. – Эпюра моментов M_s , $q = 3 \text{ кH/cm}^2$ для $\beta_0 = 130^\circ$ и R/h = 200 при *z-z*

Рис. 37. – Изополя моментов M_s , $q = 3 \text{ кH/cm}^2$, $\beta_0 = 130^\circ$ и R/h = 200 при *z-z*

Рис. 38. – Эпюра моментов M_s , q = 3 кH/см² для $\beta_0 = 130^\circ$ и R/h = 200 при *s-s*

Рис. 39. – Изополя моментов M_s , $q = 3 \text{ кH/cm}^2$, $\beta_0 = 130^\circ$ и R/h = 200 при *s-s*

Таким образом для кольцевой сферической оболочки с отношением радиуса кривизны к толщине R/h = 200 и углом полураствора $\beta_0 = 90^{\circ}$ значения меридионального изгибающего момента существенно отличаются вблизи кольцевых опор в случае жесткого закрепления и шарнирного опирания рис. 32 и рис. 34, в других точках отличия нет или оно незначительное.

Для кольцевой сферической оболочки с отношением радиуса кривизны к толщине R/h = 200 и углом полураствора $\beta_0 = 130^\circ$ значения меридионального изгибающего момента существенно отличаются также вблизи кольцевых опор в случае жесткого закрепления и шарнирного опирания, в остальных точках отличие составляет порядка 30% рис. 36 и рис. 38.

На рис.(40 – 47) представлены эпюры меридиональных изгибающих моментов M_s и изополя МКЭ при действии трех кольцевых нагрузок в кольцевых сферических оболочках с соотношением радиуса кривизны к толщине R/h = 25, углами полураствора $\beta_0 = 90^\circ$ и 130° и условиями опирания «заделка-заделка» (*z*-*z*) и «шарнир-шарнир» (*s*-*s*).

Рис. 40. – Эпюра моментов M_s , $q = 3 \text{ кH/см}^2$ для $\beta_0 = 90^\circ$ и R/h = 25 при *z-z*

Рис. 41. – Изополя моментов M_s , $q = 3 \text{ кH/см}^2$ для $\beta_0 = 90^\circ$ и R/h = 25 при *z-z*

Рис. 42. – Эпюра моментов M_s , $q = 3 \text{ кH/см}^2$ для $\beta_0 = 90^\circ$ и R/h = 25 при *s-s*

Рис. 43. – Изополя моментов M_s , $q = 3 \text{ кH/см}^2$ для $\beta_0 = 90^\circ$ и R/h = 25 при *s-s*

кН*см/см			-18,06
-3,26	-2,06 -0,38	-2,94	
		2,44	0,59
/			

Рис. 44. – Эпюра моментов M_s , q = 3 кH/см² для $\beta_0 = 130^\circ$ и R/h = 25 при *z-z*

Рис. 45. – Изополя моментов M_s , $q = 3 \text{ кH/cm}^2$ для $\beta_0 = 130^\circ$ и R/h = 25 при *z-z* Для оболочек R/h = 25 и $\beta_0 = 90^\circ$ рис. 40 и 42 условия опирания существенно влияют на значения моментов вблизи опор, в других точках отличие составляет от ~2 до 30 %

Y^Z,x

Рис. 47. – Изополя моментов M_s , q = 3 кH/см² для $\beta_0 = 130^\circ$ и R/h = 25 при *s-s* Для оболочек R/h = 25 и $\beta_0 = 130^\circ$ рис. 44 и 46 значения моментов вблизи опор также отличаются, в других точках отличие порядка ~2 - 10 %.

Литература

1. Власов В.З. Общая теория оболочек. М.: Изд. АН СССР, 1962. 520 с.

2. Гольденвейзер А.Л. Теория упругих тонких оболочек. М.: «Наука» ,1976. 512 с.

3. Тимошенко С.П., Войновский-Кригер С. Пластины и оболочки. М.: «Наука», 1966. 636 с.

4. Reissner E. Variational considerations for elastic beams and shells. Journal of the Engineering Mechanics Division, Proceedings of the American Society of Civil Engineers, 1962, Vol.88, No. EMI, pp.23-57.

5. Koiter W.T. A consistent first approximation in the general theory of thin elastic shells. In. Proceedings of the Symposium on the Theory of Thin Elastic Shells, IUTAM, Delft. Amsterdam: North-Holland, 1960, pp.12-33.

6. Литвинов В.В., Языев Б.М. Энергетический метод в форме Тимошенко-Ритца для определения критических сил осевого сжатия круговой цилиндрической оболочки // Инженерный вестник Дона, 2012, №1. URL: ivdon.ru/magazine/archive/nly2012/722/.

7. Бурцева С.В., Стрельников Г.П. К определению перемещений оболочек вариационно-энергетическим методом // Инженерный вестник Дона, 2013, №2. URL: ivdon.ru/magazine/archive/n2y2013/1633/.

8. Дьяконов В.П. Maple 10/11/12/13/14 в математических расчетах. М.: ДМК Пресс, 2014. 800 с.

9. Джабраилов А.Ш., Николаев А.П., Клочков Ю.В., Гуреева Н.А., Ищанов Т.Р. Нелинейное деформирование осесимметрично нагруженной оболочки вращения на основе МКЭ с различными вариантами определяющих уравнений // Известия Саратовского университета. Новая серия. 2022. С.48-61.

10. Григоренко Я.М., Василенко А.Т. Методы расчета оболочек, т.4, Теория оболочек переменной жесткости. Киев: Наук. Думка, 1981. 544 с.

References

1. Vlasov V.Z. Obshay teoriy obolochek [General theory of shells]. Moskva: Izd. AN SSSR, 1962. 520 p.

2. Goldenveyzer A.L. Teoriy uprugih tonkih obolochek. [Elastic thin shell theory]. Moskva: Nauka, 1976. 512 p.

3. Timoshenko S.P., Voynovskiy-Kriger S. Plastiny i obolochki [Plates and shells]. Moskva: Nauka, 1966. 636 p.

4. Reissner E. Journal of the Engineering Mechanics Division, Proceedings of the American Society of Civil Engineers, 1962, Vol. 88, No. EMI, pp.23-57.

5. Koiter W.T. In. Proceedings of the Symposium on the Theory of Thin Elastic Shells, IUTAM, Delft. Amsterdam: North-Holland, 1960, pp.12-33.

6. Litvinov V.V., Yzyev B.M. Inzhenernyj vestnik Dona, 2012, №1. URL: ivdon.ru/magazine/archive/n1y2012/722/.

7. Burzeva S.V., Strelnikov G.P. Inzhenernyj vestnik Dona. 2013, №2. URL: ivdon.ru/magazine/archive/n2y2013/1633/.

8. Diykonov V.P. Maple 10/11/12/13/14 v matematicheskih raschetax [Maple 10/11/12/13/14 in mathematical calculations]. Moskva: DMK Press, 2014. 800 p.

9. Dzabrailov A.H., Nikolaev A.P., Klochkov Y.V., Gureeva N.A., Izchanov T.R. Izvestiy Saratovskogo yniversiteta. Novay seriy, 2022. pp. 48-61.

10. Grigorenko Y.M., Vasilenko A.T. Metodi rascheta obolochec, t.4, Teoriy obolochec peremennoy zestkosti [Methods of Shell Calculation, Vol. 4, Theory of Shells of Variable Stiffness]. Kiev: Nauk. Dumka, 1981. 544 p.

Дата поступления: 1.07.2024 Дата публикации: 21.08.2024