Безобжиговый стеновой кирпич компрессионного формования на основе трепела

С.Н. Курилова

Донской государственный технический университет, Ростов-на-Дону

Аннотация: Повышение эффективности безобжигового стенового кирпича компрессионного формования достигается использованием в качестве заполнителя - трепела. Применение трепела позволяет повысить группу кирпича по теплотехническим характеристикам от малоэффективного к условно-эффективному. Обеспечиваются высокие марки кирпича по прочности. Большая величина водопоглощения по массе и низкий коэффициент размягчения свидетельствуют о низкой водостойкости кирпича. Безобжиговый стеновой кирпич компрессионного формования на основе трепела можно рассматривать только как рядовой, защищенный лицевым кирпичом или другим более водостойким материалом.

Ключевые слова: кирпич, цемент, трепел, вода, прессование, давление, твердение, плотность, прочность, водопоглощение.

Безобжиговый стеновой кирпич – цементно-минеральный композит полусухого прессования, широко применяемый в жилищном строительстве. Он получается на основе цемента, минерального заполнителя и воды в результате нормальных условиях твердения или условиях тепловлажностной обработки. Для изготовления кирпича рекомендуется портландцемент марки не ниже М400 и минеральный заполнитель с размером зерен меньше 2,5 мм. Соблюдение рекомендаций к зерновому составу заполнителя позволяет обеспечивать качество кирпича полусухого прессования [1, 2]. В качестве минерального заполнителя используют отсевы от дробления горных пород, например известняк плотный, известнякракушечник, травертин, песчаник [3, 4]. Цемент и минеральный заполнитель перемешиваются в течение одной минуты до получения однородной сухой смеси. Затем смесь орошается водой и перемешивается еще пять минут, в результате чего получается полусухая формовочная смесь. Смесь засыпают в матрицу пресс-формы и уплотняют снизу и сверху под давлением 15-40МПа.

Такой способ уплотнения называется компрессионным формованием [5, 6]. Отформованные изделия имеют достаточную распалубочную прочность не менее 1 МПа, поэтому сразу извлекаются из формы и направляются на твердение. Твердение может происходить в нормальных условиях при температуре (17-23) ⁰С и относительной влажности воздуха не менее 90% в течение 28 суток или в условиях тепловлажностной обработки при температуре 85 ⁰С и относительной влажности воздуха не менее 90% в течение 10-12 часов. Безобжиговый стеновой кирпич бывает рядовой, лицевой и цокольный.

Одним из нормируемых свойств, стенового кирпича является его средняя плотность. Чем ниже класс средней плотности кирпича, тем выше его группа по теплотехническим характеристикам (ГОСТ 530-2012). Это значит, что кирпич является менее теплопроводным и более эффективным. Средняя плотность безобжигового стенового кирпича, изготавливаемого на традиционных заполнителях (например, известняке плотном, известнякеракушечнике, травертине, песчанике) находится в интервале 1600-1900 кг/м³, что соответствует классу средней плотности 2,0. Кирпич такого класса средней плотности соответствует группе ПО теплотехническим характеристикам - малоэффективный (обыкновенный) (ГОСТ 530-2012).

Актуальной задачей в области безобжигового стенового кирпича является получение изделий с более низким классом средней плотности и более высокой группой по теплотехническим характеристикам.

Решение поставленной задачи возможно в результате использования в качестве минерального заполнителя безобжигового стенового кирпича горных пород с повышенной пористостью. Одной из таких пород является органогенная (биохимическая) порода осадочного происхождения - трепел. Трепелы - легкие тонкопористые породы, состоящие в основном из мельчайших, глобулярных зерен кремнезема, размером менее 0,005 мм.

Окраска трепелов может быть светло-серая почти белая, желто-серая, буровато-серая. Их средняя плотность находится в интервале от 700 до 1200 $\kappa \Gamma/M^3$, а пористость зерен — от 50 до 70%. Месторождения трепелов на территории России являются очень крупным. Запасы этого сырья составляют более 50 млн. M^3 [8-10].

Для оценки трепелов как сырья для безобжигового стенового кирпича был поставлен эксперимент, в котором использовался трепел Успенского месторождения. Вначале эксперимента были определены свойства трепела как мелкого заполнителя прессованных композитов, а также цемента завода «Пролетарий» (г. Новороссийск). Зерновой состав трепела представлен в таблице \mathbb{N}_2 1.

Таблица № 1 Зерновой состав трепела Успенского месторождения

Остатки	Размер отверстий контрольных сит, мм			Прошло	
на ситах	1,25	0,63	0,315	0,16	через сито
					0, 16 мм
Частные, г	110	162	120	400	208
Частные, %	11,0	16,2	12,0	40,0	20,8
Полные, %	11,0	27,2	39,2	79,2	100

Физические свойства трепела представлены в таблице № 2.

Таблица № 2 Физические свойства трепела Успенского месторождения

Вид	Физические свойства трепела				
заполните-	Истинная	Средняя	Насыпная	Пористость,	Гигроско-
ЛЯ	плотность,	плотность,	плотность,	%	пическая
	Γ/cm^3	$\kappa\Gamma/M^3$	$\kappa\Gamma/M^3$		влажность,
					%
Трепел	2,6	1170	1000	55	2,6

Физико-механические свойства цемента завода «Пролетарий» (г.Новороссийск) представлены в таблице № 3.

Таблица № 3 Физико-механические свойства цемента завода «Пролетарий»

Вид	Физико-механические свойства цемента				
цемента	Тонкость	Истинная	Насыпная	Нормальная	Активность
	помола,	плотность,	плотность,	густота	цемента,
	%	Γ/cm^3	$\kappa\Gamma/M^3$	цементного	МПа
				теста, %	
Портланд-					
цемент	6,2	3,1	1157	26	45

В эксперименте оценивалось влияние расхода цемента на физикомеханические свойства прессованных цементно-минеральных композитов на основе трепела Успенского месторождения и устанавливалось рациональное количество цемента для обеспечения необходимых эксплуатационных свойств безобжигового стенового кирпича.

Расход цемента в композитах был принят 10, 20 и 30% от массы сухих компонентов - цемента и трепела. Было принято во внимание, что расход цемента более 30 % является экономически нецелесообразным. Расход трепела в композитах составил при этом, соответственно, 90, 80 и 70%. Расход воды был уточнен на предварительных экспериментах и составил 27% сверх массы сухих компонентов. Свойства композитов оценивались на образцах цилиндрах диаметром и высотой 5 см, изготовленных методом компрессионного формования при давлении прессования 20 МПа. Образцы твердели в нормальных условиях и в условиях тепловлажностной обработки.

В качестве исследуемых свойств были выбраны коэффициент уплотнения композитов, их средняя плотность, предел прочности при сжатии, водопоглощение по массе и коэффициент размягчения.

Для свежеотформованных композитов, извлекаемых из матрицы пресса сразу после прессования, оценивалось влияние расхода цемента на коэффициент уплотнения, среднюю плотность и распалубочную прочность.

Физико-механические свойства этих композитов представлены в таблице №4.

Таблица № 4 Физико-механические свойства свежеотформованных композитов

No	Расход	Физико-механические свойства			
Π/Π	цемента,	Коэффициент	Средняя	Предел прочности	
	%	уплотнения	плотность, $\kappa \Gamma/M^3$	при сжатии, МПа	
1	10	2,47	1810	1,5	
2	20	2,65	1830	1,8	
3	30	2,67	1850	2,0	

Коэффициент уплотнения с увеличением расхода цемента от 10 до 30% в композитах увеличивается от 2,47 до 2,67. Это объясняется уменьшением расхода трепела. Трепел имеет пористые зерна. Чем меньше содержание пористых зерен и больше тонких плотных частиц цемента при одном и том же расходе воды, тем уплотняемость прессованного композита будет больше. Величина коэффициента уплотнения свидетельствует о том, что композиты на основе трепела хорошо прессуются. Средняя плотность с увеличением расхода цемента от 10 до 30% в композитах увеличивается от 1810 до1850 кг/м³, что объясняется более высоким содержанием плотных частиц цемента в композитах. Распалубочная прочность при всех расходах цемента не менее 1 МПа, что соответствует требованиям к прессованным композитам и говорит о достаточной прочности зерен трепела. С увеличением расхода цемента от 10 до 30% в композитах предел прочности при сжатии увеличивается от 1,5 до 2,0 МПа закономерно с увеличением средней плотности материала.

Для затвердевших композитов оценивались средняя плотность, предел прочности при сжатии, водопоглощение по массе и коэффициент размягчения.

Средняя плотность и предел прочности при сжатии определялись для образцов, твердевших в нормальных условиях, в условиях тепловлажностной обработки и образцов, высушенных до постоянной массы. Сушка до постоянной массы проводилась с целью снижения влажности образцов на пористом заполнителе.

Средняя плотность затвердевших прессованных композитов, представленная в таблице N = 5, закономерно растет с увеличением расхода цемента от 10 до 30%.

Таблица № 5 Средняя плотность затвердевших прессованных композитов

No	Расход	Средняя плотность, кг/м ³			
Π/Π	цемента,	Образцов после	Образцов после	Образцов	
	%	тепловлажностной	нормального	высушенных до	
		обработки	твердения	постоянной	
				массы	
1	10	1780	1750	1440	
2	20	1840	1820	1470	
3	30	1850	1830	1510	

Рост средней плотности в композитах объясняется увеличением более плотных частиц цемента и уменьшением количества легких пористых зерен трепела. Средняя плотность композитов, высушенных до постоянной массы, в среднем на 19% меньше средней плотности композитов после нормального твердения и на 20% меньше средней плотности композитов после тепловлажностной обработки. Это объясняется присутствием в композитах значительного количества пористых зерен трепела. При тепловлажностной обработке за счет тепло-массообмена пористые зерна трепела поглощают большее количество воды, а после нормального твердения, при котором тепло-массообмен отсутствует, зерна поглощают меньшее количество воды [11]. Средняя плотность композитов высушенных до постоянной массы представляет практический интерес эксплуатационное свойство как

безобжигового стенового кирпича. В образцах эта плотность соответствует малоэффективному кирпичу (ГОСТ 530-2012). Однако, если рассматривать стандартный кирпич с пустотностью 12 %, то средняя плотность кирпича на трепеле при расходе цемента 10% составит 1271 кг/м³, при расходе цемента 20% - 1294 кг/м³, а при расходе цемента 30% - 1329 кг/м³. Кирпич со средней плотностью 1210-1400 кг/м³ имеет класс средней плотности 1,4 и соответствует группе изделий по теплотехническим характеристикам - условно-эффективные (ГОСТ 530-2012). Тем самым применение трепела позволяет повысить группу кирпича по теплотехническим характеристикам от малоэффективного к условно-эффективному.

Прочность при сжатии затвердевших прессованных композитов, представленная в таблице N_2 6, также растет с увеличением расхода цемента от 10 до 30 %, соответственно увеличению средней плотности.

Таблица № 6 Предел прочности при сжатии затвердевших прессованных композитов

$N_{\underline{0}}$	Расход	Предел прочности при сжатии, МПа			
п/п	цемента,	Образцов после	Образцов после	Образцов	
	%	тепловлажностной	нормального	высушенных до	
		обработки	твердения	постоянной	
				массы	
1	10	7,9	10,4	28,6	
2	20	10,5	21,4	32,7	
3	30	15,5	26,5	40,2	

Практическое значение имеет прочность композитов высушенных до постоянной массы. Она выше прочности на сжатие после нормального твердения в 1,5 - 2,75 раза, а прочности на сжатие после тепловлажностной обработки в 2,6 – 3,6 раза. Это объясняется ролью пористых зерен трепела. После тепловлажностной обработки в результате тепло-массообмена пористые зерна трепела впитывают большее количество воды [11], поэтому образцы имеют более высокую среднюю плотность (таблица N = 5), но

прочность при сжатии более влажных образцов оказывается более низкой (таблица № 6). После нормального твердения, при котором отсутствует тепло-массообмен между композитом и средой, пористые зерна трепела впитывают меньшее количество воды [11], поэтому средняя плотность образцов по сравнению с тепловлажностной обработкой оказывается меньше (таблица № 5), а прочность при сжатии менее влажных образцов оказывается больше (таблица № 6). Прочность композитов высушенных до постоянной массы при расходе цемента 10% составляет 28,6 МПа, при расходе 20% - 32,7 МПа, а при расходе 30% - 40,2 МПа. Таким образом, даже при небольшом расходе цемента 10-20% можно получать кирпич на основе трепела высоких марок 250 и 300 (ГОСТ 530-2012). Тем самым применение трепела как заполнителя безобжигового стенового кирпича в сухом состоянии позволяет повысить группу кирпича по теплотехническим характеристикам и в то же время обеспечивает его высокую марочную прочность.

Водопоглощение по массе с увеличением расхода цемента в композитах уменьшается. Композиты с расходом цемента 10% не выдержали испытание и разрушились. Это говорит о большой открытой пористости композитов и их не водостойкости. Композиты с расходом цемента 20 и 30% сохранили свою целостность и выдержали испытание. В композитах с расходом цемента 20% водопогощение по массе составило 31%, а композитах с расходом цемента 30% водопоглощение по массе оказалось 29%. Величина водопоглощения по массе в композитах с трепелом в целом высокая, поэтому композиты должны работать в условиях, защищенных от влаги.

Коэффициент размягчения удалось определить только в композитах с расходом цемента 20 и 30%. С увеличением расхода цемента в композитах от 20 до 30% коэффициент размягчения увеличивается. В композитах с расходом цемента 20% коэффициент размягчения составил 0,3, а в

композитах с расходом цемента 30% - 0,4. Низкая величина коэффициента размягчения не рекомендует использовать материал во влажных условиях.

По показателям водопоглощения по массе и коэффициента размягчения прессованные цементно-минеральные композиты на основе трепела рекомендуются для рядового стенового кирпича. Расход цемента 10% является нецелесообразным с точки зрения водостойкости кирпича. По показателям водопоглощения по массе и коэффициента размягчения для рядового стенового кирпича на основе трепела рекомендуется расход цемента 20–30%.

Применение трепела в качестве заполнителя безобжигового стенового кирпича является актуальным и целесообразным. При расходах цемента 10-30% кирпич имеет среднюю плотность в сухом состоянии 1271-1329 кг/м³. Кирпич с такой средней плотностью имеет класс средней плотности 1,4 и соответствует группе изделий по теплотехническим характеристикам условно-эффективные (ГОСТ 530-2012). Тем самым применение трепела в качестве заполнителя безобжигового стенового кирпича повышает группу кирпича по теплотехническим характеристикам от малоэффективного к условно-эффективному. Этой величине средней плотности соответствуют прочности 250 и 300. высокие марки кирпича по Однако эксплуатационные характеристики кирпича обеспечиваются только в сухих условиях. Большая величина водопоглощения по массе 31–29% и низкий коэффициент размягчения 0,3-0,4 свидетельствуют о низкой водостойкости кирпича на основе трепела. Рекомендуемый расход цемента с точки зрения водостойкости для кирпича составляет 20–30%. Безобжиговый стеновой формования компрессионного на основе трепела рассматривать только как рядовой кирпич, защищенный лицевым кирпичом или другим более водостойким материалом.

Литература

- 1. Повышение Наумов A.A. качества кирпича полусухого прессования, изготовленного на основе глинистого сырья месторождения «Кагальник-3» // Инженерный вестник 2016, Дона, $N_{\underline{0}}$ URL: ivdon.ru/ru/magazine/archive/n4y2016/3823/.
- 2. Мальцева И.В. Влияние глинистого вещества на реологию пеномасс с различной концентрацией твердой фазы // Инженерный вестник Дона, 2017, №1. URL: ivdon.ru/ru/magazine/archive/n1y2017/3977/.
- 3. M. Safiuddin, M.Z. Jumaat, M.A. Salam, M.S. Islam, R. Hashim. Utilization of solid wastes in construction materials. International Journal of the Physical Sciences. 2010. №10. pp. 1952-1963.
- 4. Berge B. The Ecology of Building Materials. [Architectural press]. Oxford, 2005. 474 p.
- 5. Попильский Р.Я., Кондрашев Ф.В. Прессование керамических порошков. Изд-во «Металлургия», 1968. 272 с.
- 6. Курилова С.Н. Влияние рецептурно-технологических факторов на свойства безобжиговых стеновых изделий компрессионного формования на основе опоки Авило-Федоровского месторождения. // Научное обозрение. 2015. № 22. С.153-156.
- 7. Дистанов У.Г. Минеральное сырье. Опал-кристобалитовые породы. М.: ЗАО «Геоинформмарк», 1998. 27 с.
- 8. Талпа Б.В. Новые виды минерального сырья на юге России / Б.В. Талпа, Н.И. Бойко, В.Д. Котляр // Известия Вузов, Сев.-Кав. регион, Естеств. науки. 1995. № 2. С.32-34.
- 9. Курилова С.Н., Шаталов А.А. Прессованные эффективные изделия на основе кремнистых пород-опок. // Научное обозрение. 2012. № 6. С. 135-137.
 - 10. Кудинов А.А. Тепломассообмен. М.:Инфра-М, 2012. 375с.

References

- 1. Naumov A.A. Inzhenernyj vestnik Dona (Rus), 2016, №4. URL: ivdon.ru/ru/magazine/archive/n4y2016/3823/.
- 2. Mal'ceva I.V. Inzhenernyj vestnik Dona (Rus), 2017, №1. URL: ivdon.ru/ru/magazine/archive/n1y2017/3977/.
- 3. M. Safiuddin, M.Z. Jumaat, M.A. Salam, M.S. Islam, R. Hashim. Utilization of solid wastes in construction materials. International Journal of the Physical Sciences. 2010. №10. pp. 1952-1963.
- 4. Berge B. The Ecology of Building Materials. [Architectural press]. Oxford, 2005. 474 p.
- 5. Popil'skij R.Ja., Kondrashev F.V. Pressovanie keramicheskih poroshkov. [Pressing of ceramic powders.] Izd-vo: «Metallurgija», 1968. 272 p.
 - 6. Kurilova S.N. Nauchnoe obozrenie. 2015. №22. pp.153-156.
- 7. Distanov U.G. Mineral'noe syr'e. Opal-kristobalitovye porody. [Mineral raw materials. Opal-Cristobalite rocks]. M.: ZAO «Geoinformmark», 1998. 27 p.
- 8. Talpa B.V. Izvestija Vuzov, Sev.-Kav. region, Estestv. nauki. 1995. №2. pp. 32-34.
- 9. Kurilova S.N., Shatalov A.A. Nauchnoe obozrenie. 2012. №6. pp. 135-137.
- 10. Kudinov A.A. Teplomassoobmen. [Heat and mass transfer]. M.: Infra-M, 2012. 375 p.