Влияние источника тепла от воспламенения на расчетную кривую горения пенополиэтилена при пожаре в отсеке

М.В. Поклонская, А.А. Сеньченко, А.В. Палий, Чернега Ю.Г.

Донской государственный технический университет

Аннотация: В данной статье проанализировано поведение расчетной кривой пожара в соответствии с источником тепла воспламенения в отсеке. Индекс замедления, который является основным фактором, используемым для прогнозирования времени, необходимого для достижения максимальной скорости тепловыделения, уменьшался в зависимости от размера источника тепла воспламенения независимо от объема горючего пенополиэтилена.

Ключевые слова: кривая пожарного расчета, изоляция труб, источник тепла зажигания, индекс замедления, скорость тепловыделения.

Введение

Пожар распространяется, когда температура поверхности горючего материала увеличивается ДΟ значения, превышающего эталонную температуру, что вызывает химическую реакцию окислителями, c присутствующими поблизости. Кроме того, скорость распространения огня твердого материала увеличивается пропорционально площади поверхности в зависимости от тепловых условий окружающей среды и термодинамических свойств горючего материала. Таким образом, индекс скорости возгорания (FIGRA), который представляет собой отношение максимальной скорости тепловыделения ко времени достижения максимальной скорости широко используется в пожарных технологиях для тепловыделения, классификации класса огнестойкости в соответствии с его измеренными значениями. Однако, поскольку FIGRA ограничивается прогнозированием сценариев пожара на основе явлений пожара в наихудших случаях или анализом рисков, следует учитывать расчетные кривые пожара, которые включают изменяющуюся во времени скорость тепловыделения [1].

Описание исследования

На рис. 1 показана схема образца, сожженного в полузакрытом отсеке, и явление теплопередачи. Рассматриваемый образец был изготовлен с использованием огнестойкой плиты толщиной 25 мм. Как показано на рис. 1, когда горючее сжигается источником тепла воспламенения в локальной точке, общая скорость тепловыделения (Q_t) за счет конвекции (Q_{conv}) внутреннего набегающего потока и лучистого тепла (Q_{rad}) во внешних стенах и пламени следует соотношению, показанному в уравнении (1) [2].

$$Q_t(t) = Q_f(t) + Q_{ig}, (1)$$

где t указывает время горения.

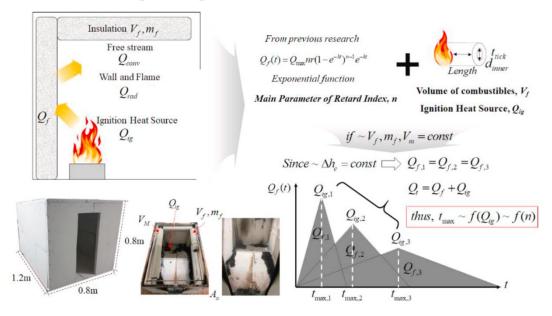


Рисунок 1 — Схема влияния источника тепла зажигания и индекса замедления на время, необходимое для достижения максимальной скорости тепловыделения.

Общая скорость тепловыделения (Q_t) и скорость тепловыделения горючего (Q_f) в уравнении (1) со временем изменяются в зависимости от площади поверхности горения (А). Теплота сгорания $(\Delta h_C, \kappa Дж / \kappa \Gamma)$, которая характеризуется термохимическими свойствами, представляет собой количество энергии, генерируемой при изменении единицы массы. Как

показано в уравнении (2), его значение постоянно в зависимости от состава материала.

$$Q_f(t) = \eta \dot{m}_f \Delta h_C \,, \tag{2}$$

где η , \dot{m}_f , а также Δh_C указывают эффективность сгорания, скорость уменьшения массы горючего и теплоту сгорания, соответственно.

Интеграл от скорости тепловыделения за все время сгорания $(Q_f(t))$ должен соответствовать закону сохранения энергии. Таким образом, максимальная скорость тепловыделения (Q_{max}) увеличивается по мере уменьшения времени сгорания горючего [3]. Когда геометрическая форма пространства отсека и массовый расход горючего не изменяются, можно предположить, что t_{max} имеет значительную корреляцию с теплотой сгорания источника тепла зажигания (Q_{ig}) , как показано в уравнении (3).

$$Q_{max}, t_{max} \sim f(Q_{ig}), \tag{3}$$

где Q_{ig} - теплотворная способность источника тепла зажигания.

Ингасон [4,5] вывел модифицированное экспоненциальное уравнение (формула 4), чтобы представить явление изменяющейся скорости тепловыделения в течение периода горения, используя уравнение экспоненциальной модели Нумаджири и Фурукавы, Q_{max} , и общую генерируемую энергию (E_{tot}).

$$Q_f(t) = Q_{max} \times nr(l - e^{kt})^{n-1} \times e^{-kt},$$

где n, r и k — индекс запаздывания, амплитудный коэффициент и коэффициент ширины волны соответственно. Когда $t=t_{max},\ Q_f(t_{max})=Q_{max};$ следовательно, r и k должны соответствовать уравнениям (5), (6).

$$k = Q_{max} / E_{tot} r, (5)$$

$$r = (1 - 1/n)^{1-n} \tag{6}$$

где E_{tot} указывает общую теплотворную способность, создаваемую горючим в течение периода сгорания.

В уравнении 4, когда $t=t_{max},\ dQ(t)\,/\,dt=0;$ как таковое, t_{max} можно получить с помощью уравнения (8).

$$n = e^{kt}, (7)$$

$$t_{max} = \frac{\ln(n)}{k},\tag{8}$$

Следовательно, как показано в правом нижнем углу рисунка 1, t_{max} также связано с уравнением (9), и это исследование направлено на получение значения n в соответствии с Q_{ig} с учетом горючего объема (V_f).

$$t_{max} \sim f(n) \sim f(Q_{ig}), \tag{9}$$

Для анализа индекса замедления (n) и расчетной кривой возгорания по уравнению 4 в соответствии с изменениями условий воспламенения и объема горючего вспененный полиэтилен был выбран в качестве горючего, а скорость тепловыделения была измерена с помощью конического калориметра.

На рис. 2 (а) сравнивается теоретическая скорость тепловыделения и результаты измерений пропановой горелки с помощью конического калориметра, использованного в этом исследовании [6,7,8]. Источником тепла зажигания можно управлять с помощью регулятора массового расхода (модель: TSC-145), как указано в таблице 1, имеющего диапазон измерений около 0-200 л / мин с точностью 1% от полного диапазона. Кроме того, для визуального подтверждения используются регулирующий клапан расходомер плоского типа. Согласно расчету неопределенностей типа А в ходе повторных экспериментов, конусный калориметр, использованный в этом исследовании, показал надежность приблизительно ± 95%, когда коэффициент охвата был на уровне достоверности 1,95.

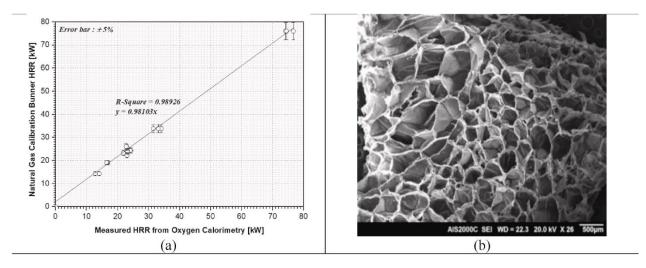


Рисунок 2 – а) результаты калибровки конического калориметра с пропановой горелкой; (b) Изображение испытуемого образца пенополиэтилена, полученное с помощью сканирующей электронной микроскопии.

Таблица 1 — Технические характеристики экспериментальной установки и свойств материалов.

Аппарат	Технические	Материальная	Значение
	характеристики	собственность	
Термопара	Проволока типа К,	Эталонная температура	744
	диапазон: 200–1000 ° С	[K]	
Система сбора	Напряжение: от 20 мВ до	Энергия активации [кДж /	1,19 ×
данных	100 B, 1–5 B F · S., 20	кмоль	10^{5}
	каналов, точность: $\pm 0.1\%$	-	
Размер	Длина: 5 м, диаметр: 0,2 м,	Предэкспоненциальный	1,05 ×
воздуховода и	мощность вентилятора: 3	множитель [1 / с]	10 ⁶
вентилятор	л.с.		
Анализатор О2	Выход: 4-20 мА, диапазон:	Теплота сгорания, [кДж /	42660
	0,7–1,2 бар, модель:	кг]	
	OXYMAT 61	_	
Датчик	Выход: 0–10 В, диапазон:	Плотность [кг / м ³]	26 год
давления	1250 Па, модель: MS-311		
Регулятор	Топливо: CH_4 , C_3H_8 ,	Удельная теплоемкость	2.31
массового	мощность: 0-5 В	[кДж / кг-С]	
расхода	постоянного тока, диапазон:		
	200 л / мин, модель: TSC-		
	145		
Передатчик	Топливо: CH_4 , C_3H_8 ,	Теплопроводность [Вт /	0,0425
давления	выход: 0–20 мА, диапазон:	MK]	
	0-20 бар, модель: PSC-		
	EBAPG		

На рис. 2 (b) показана структура образца изоляции труб из вспененного полиэтилена, используемого в этом исследовании, наблюдаемая под растровым электронным микроскопом (модель: AIS200c, Seron Technologies Inc.), а в таблице 1 обобщены термохимические свойства и характеристики экспериментальных устройств [9,10].

Заключение

В этом исследовании анализировалась расчетная кривая возгорания горючего вспененного полиэтилена в соответствии с изменениями теплотворной способности источника тепла воспламенения. Для этой цели была изготовлена конструкция, размер которой составляет одну треть от размера образца углового помещения ISO 9705, и скорость тепловыделения была проанализирована в соответствии со временем горения горючего полиэтиленового пенопласта. Были получены следующие результаты.

Во-первых, при горючем объеме пенополиэтилена (V_f) 0,019 м 3 , когда теплотворная способность (Q_{ig}) источника тепла зажигания составляла 12,00 кВт, 15,98 кВт и 23,20 кВт, максимальная скорость тепловыделения (Q_{max}) была постоянной на уровне 209 ± 10 кВт, тогда как время, необходимое для достижения максимальной скорости тепловыделения (t_{max}), уменьшилось до 589 с, 203 с и 136 с соответственно. Это связано с тем, что, поскольку полная энергия (E_{tot}) сохраняется в одних и тех же условиях для различных горючих объемов, Q_{ig} является основным фактором индекса запаздывания (n), который определяет t_{max} расчетной пожарной кривой.

Во-вторых, расчетная кривая пожара была спрогнозирована на основе экспериментальных значений скорости тепловыделения в соответствии с Q_{ig} для значений V_f 0,019 м 3 и 0,038 м 3 . Согласно результатам, n

экспоненциально уменьшалось (-1,3) с увеличением Q_{iq} . Однако по мере уменьшения Q_{ig} , значение n, необходимое для достижения t max, быстро увеличивалось из-за k, который зависит от Q_{max} и E_{tot} .Следовательно, метод прогнозирования расчетной кривой возгорания, полученный исследовании, считается полезным только в условиях, когда пожар быстро распространяется со значением t_{max} примерно 200 с и значением Q_{ig} 15 кВт или более. Ограничение представленного уравнения должно учитывать объем горючих веществ материалов путем установления ТИП экспериментальных данных. Однако в предыдущих исследованиях не учитывались Q_{ig} , которые существенно влияют на t_{max} и скорость роста пожара, несмотря на то, что в расчетных кривых горения учитывались характеристики пространства отсека и условия воспламенения. Можно заметить, что корреляции между n (индекс запаздывания) и Q_{ig} с \pm 5% экспериментальных значений можно использовать для создания улучшенных расчетных моделей прогнозирования кривой горения.

Литература

- 1. En13823, Reaction to Fire Tests for Building Products-Building Products Excluding Floorings Exposed to the Thermal Attack by a Single Burning Item, CEN, Brussels, 2002, P. 3.
- 2. Дерюгин В.В., Васильев В.Ф., Уляшева В.М.: Тепломассообмен. Учебное пособие. 2021. С. 12.
- 3. Цирельман Н.М. Теория и прикладные задачи тепломассопереноса. 2019. C. 81-88.
- Шабаров А., Кислицын А., Григорьев Б., Михайлов П., Пульдас Л. Тепломассоперенос в нефтегазовых и строительных технологиях. 2014. С. 156-167.

- 5. Ingason H., Fire development in large tunnel fires, Fire Saf. Sci. 8 (2005) 1497–1508, doi.org/10.3801/IAFSS.FSS.8-1497.
- 6. Li, H. Y. Ingason, The fire growth rate in a ventilated tunnel fire, Fire Saf. Sci. 10 (2011) 347, doi.org/10.3801/IAFSS.FSS.10-347
- 7. Li, H. Y.Ingason, A new methodology of design fires for train carriages based on exponential curve method, Fire Technol. 52 (5) (2016) 1449–1464, doi. org/10.1007/s10694-015-0464-3.
- 8. Палий А.В. Исследование способов улучшения тепловых режимов теплонагруженных микроэлектронных устройств. Кандидатская диссертация. Таганрог, 2007. С. 140.
- 9. Палий А.В., Саенко А.В., Бесполудин В.В. Влияние формы выступа и его расположения на поверхности радиатора на температуру источника тепла. Инженерный вестник Дона, 2016, №2. URL: ivdon.ru/ru/magazine/archive/n2y2016/3661
- 10. Гайдин Н.М., Поклонская М.В., Палий А.В. Исследование влияния конструктивных особенностей теплоотвода на эффективность охлаждения процессора // Инженерный вестник Дона, 2021, №10. URL: ivdon.ru/ru/magazine/archive/n10y2021/7213.

References

- 1. En13823, Reaction to Fire Tests for Building Products-Building Products Excluding Floorings Exposed to the Thermal Attack by a Single Burning Item, CEN, Brussels, 2002, P. 3.
- 2. Deryugin, V. V., Vasil'ev V. F., V. M. Ulyasheva Teplomassoobmen. [Heat and Mass Transfer]. Uchebnoe posobie. 2021. P. 12.
- 3. Zibelman N. M. Teoriya i prikladnye zadachi teplomassoperenosa [Theory and applied problems of heat and mass transfer]. 2019. pp. 81-88.

- 4. Shabarov A. Kislitsyn A., Grigoriev Boris Mikhailov P., L. Teplomassoperenos v neftegazovyh i stroitel'nyh tekhnologiyah [Pulidas heat and mass transfer in the oil and gas and construction technologies]. 2014. pp. 156-167.
- 5. Ingason H., Fire development in large tunnel fires, Fire Saf. Sci. 8. 2005 1497–1508, doi.org/10.3801/IAFSS.FSS.8-1497.
- 6. Li, H. Y. Ingason. The fire growth rate in a ventilated tunnel fire, Fire Saf. Sci. 10 (2011) 347, doi.org/10.3801/IAFSS.FSS.10-347.
- 7. Li, H. Y. Ingason. A new methodology of design fires for train carriages based on exponential curve method, Fire Technol. 52 (5) (2016) 1449–1464, doi.org/10.1007/s10694-015-0464-3.
- 8. Palii A.V. Issledovaniye sposobov uluchsheniya teplovykh rezhimov teplonagruzhennykh mikroelektronnykh ustroystv. Kandidatskaya dissertatsiya. [Investigation of ways to improve the thermal conditions of heat-loaded microelectronic devices]. Taganrog, 2007, p. 140.
- 9. Palii A.V., Sayenko A.V., Bespoludin V.V: Inzhenernyj vestnik Dona, 2016, №2. URL: ivdon.ru/ru/magazine/ archive/n2y2016/3661
- 10. Gaydin N.M., Poklonskaya M.V., Palii A.V.: Inzhenernyj vestnik Dona, 2021, №10. URL: ivdon.ru/ru/magazine/archive/n10y2021/7213