

Влияние механоактивации на дисперсность и гранулометрический состав порошка Pd для катодных сплавов Pd-Ba

С.Д. Калошкин, В.Г. Костишин, А.Ю. Адамцов, Е.К. Горский, В.Ю. Задорожный

Национальный исследовательский технологический университет «МИСиС», 119049, г. Москва, Ленинский проспект, 4

Аннотация: Одним из основных недостатков современных металлосплавных катодов Pd-Ва является неоднородное распределение интерметаллида Pd₅Ba в матрице Pd. Данное обстоятельство приводит к занижению срока службы и технических показателей приборов CBЧ-Электроники на основе данных катодов.

К существенному улучшению однородности катодных сплавов Pd-Ba должна привести операция механоактивации порошка Pd, проводимая до процесса его прессования.

В работе изучено влияние механоактивации на форму частиц, дисперсность и гранулометрический состав порошка Pd. Показано, что механоактивация приводит к существенному уменьшению среднего размера и среднемассового размера частиц порошка Pd, а также к существенному росту удельной поверхности частиц.

Установлены оптимальные режимы проведения механоактивации порошка Pd с целью его применения для получения металлосплавных катодов.

Ключевые слова: металлосплавные катоды Pd-Ba, механоактивация, дисперсность, гранулометрический состав, среднемассовый размер частиц, удельная поверхность, эмиссионные свойства.

Введение

Одно из применений порошкообразного палладия в электронике – его использование для получения металлосплавных катодов Pd-Ba современных мощных СВЧ-приборов (магнетронов, ламп бегущей волны и т.д.) [1-4].

Металлосплавные катоды обладают рядом свойств, характерных для чистых металлов: устойчивостью эмиссии к действию электронной бомбардировки, высокой электро- и теплопроводностью, гладкостью поверхности. Максимальный коэффициент вторично-электронной эмиссии для разных сплавов составляет 1,8...3,0 [1]. Совокупность этих свойств особенно благоприятна для использования катодов Pd-Ba в магнетронных приборах с диапазоном рабочих температур 300°C [2].

Катод Pd-Ba представляет собой двухфазный сплав с массовой долей бария 0,5-2%, причем одна фаза - интерметаллическое соединение Pd₅Ba, вторая - чистый палладий. Эмиссионные свойства Pd-Ba (работа выхода φ ,

коэффициент вторичной эмиссии σ) обусловлены адсорбцией пленки бария, источником которого является соединение Pd5Ba [1-2].

Одним из существенных недостатков металлосплавных катодов Pd-Ba является сильно неоднородное распределение интерметаллида в в матрице палладия. Такая особенность данных катодов приводит к уменьшению коэффициента вторичной электронной эмиссии катода и уменьшению к.п.д. прибора на его основе [2-4]. То есть, технология получения данных катодов требует доработки. Возможных технологических приемов, приводящим к существенному увеличению однородности сплава Pd-Ba, может быть механоактивация порошка Pd.

Целью настоящей работы было изучение влияния механоактивации на дисперсность и гранулометрический состав порошка Pd.

Объекты и методики экспериментальных исследований

Механоактивация — процесс образования химически активного вещества путем механического измельчения. Уникальность этого метода заключается в том, что с его помощью легко достигается предельная степень измельчения кристаллитов. Изменяя режимы и среду механоактивации, можно изменять характеристики материалов, получать новые материалы и фазы, в том числе неравновесные и аморфные [5].

В работе был использован порошок Pd марки ППд1 ПдАП-1 СТО 00195200 – 040-2008. Механоактивацию исходного порошка Pd проводили с помощью планетарной шаровой мельницы «АГО-2С». Использовались циркониевые шары диаметром 5 мм и керамический барабан. Скорость вращения барабана составляла 840 об/мин. С целью получения информации о временной зависимости эффекта влияния механоактивации на свойства порошка Pd, обработку объекта исследования в мельнице проводили при трёх значениях времени: 6 минут, 15 минут и 30 минут.

Для получения электронных изображений порошка Pd использовался растровый электронный микроскоп Mira 3 XMU производства фирмы Tescan.

Анализ электронных изображений порошка по размеру частиц проводился с помощью специальной программы «ImageScope» [6]

Для измерения удельной поверхности порошков и среднемассового размера частиц порошков использовали высокоточный автономный прибор дисперсионного анализа ПСХ-11 производства ООО «Компания Ходакова», г. Москва. Метод измерения основан на общепринятом методе газопроницаемости Козени и Картмана [7-8]. Для расчета удельной поверхности и среднего размера частиц измеряют пористость слоя порошка.

Результаты исследований и обсуждение

По полученным результатам анализа электронных изображений порошка были построены гистограммы 4 типов:

1. Гистограммы типа «обычная», - диаграммы распределения всего массива измеренных данных по группам данных. Группы данных изображаются в виде серии полос одинаковой ширины. Высота этих полос указывает количество данных в каждой группе. Частотность событий указывается по вертикальной оси, а группы данных указываются по горизонтальной оси.

2. Гистограммы типа «с накоплением», отличающиеся от обычных тем, что частотность событий каждой последующей группы данных в положительном направлении горизонтальной оси равна сумме частотностей всех предыдущих групп данных.

3. Гистограммы типа «доля (%)», - то есть обычные гистограммы, нормированной на 100%, - диаграммы на вертикальной оси которых указывается не абсолютное значение частотности событий группы данных, а относительное, в процентах.

4. Гистограммы типа «доля (%) с накоплением», являющиея гистограммами с накоплением, нормированными на 100%.

Полученные гистограммы представлены на рисунках 2, 4, 6, 8.

Для последующего сравнения на рисунке 1 представлены электронные изображения исходного (до механоактивации) порошка Pd.

Как видно из рис. 1, частицы порошка Pd в исходном состоянии имеют

неправильную форму и губчатую структуру.

Рисунок 2 – Гистограмма распределения частиц по размерам для исходного порошка Pd: a) тип «обычный»; б)тип «с накоплением»;

в) тип «доля (%)»; г) тип «доля (%) с накоплением»

В соответствии с проведенными исследованиями и их обработкой, статистические данные для порошка Pd в исходном состоянии следующие:

- количество проведенных измерений 184;
- средний линейный размер (длина) частиц 603 мкм;
- минимальный линейный размер (длина) частиц 339 мкм;
- максимальная линейный размер (длина) частиц 1270 мкм;
- среднее квадратичное отклонение 146 мкм.

На рисунке 3 представлены электронные изображения порошка Pd после механоактивации в течение 6 минут.

Рисунок 3 – Электронные изображения механоактивированного порошка

Pd (6 минут)

- а) увеличение 75 раз; б)
- б) увеличение 1 100 раз;
- в) увеличение 2 210 раз; г) увеличение 8 820 раз.

Из рисунка видно, что уже после 6 мин обработки в мельнице частицы порошка приобретают плоскую форму.

Рисунок 4 – Гистограмма распределения частиц по размерам для механоактивированного в течение 6 минут порошка Pd:

- a) «обычного» типа; б) тип «с накоплением»;
- в) тип «доля (%)»; г) тип «доля (%) с накоплением»

Таким образом, статистические данные для порошка Pd после проведения механоактивации в течение 6 минут следующие:

- количество проведенных измерений 372;
- средняя длина частиц 299 мкм;
- минимальная длина частиц 59,6 мкм;
- максимальная длина частиц 814 мкм;
- среднее квадратичное отклонение 128 мкм.

На рисунке 5 представлены электронные изображения порошка Pd после механоактивации в течение 15 минут.

Рисунок 5 – Электронные изображения механоактивированного порошка Pd (15 минут)

a) – увеличение 101 р	раз;
в) – увеличение 2 210	раз;

б) – увеличение 1 100 раз;

г) – увеличение 18 400 раз.

Рисунок 6 – Гистограмма распределения частиц по размерам для механоактивированного в течение 15 минут порошка Pd:

- a) тип «обычный»; б) тип «с накоплением»;
- в) тип «доля (%)»; г) тип «доля (%) с накоплением»

Статистические данные для порошка Pd после проведения механоактивации в течение 15 минут следующие:

- количество проведенных измерений 1000;
- средняя длина частиц 87,6 мкм;
- минимальная длина частиц 4,93 мкм;
- максимальная длина частиц 842 мкм;
- среднее квадратичное отклонение 59,9 мкм.

На рисунке 7 представлены электронные изображения порошка Pd после механоактивации в течение 30 минут.

Рисунок 7 – Электронные изображения механоактивированного порошка Pd

(30 минут)

- а) увеличение 104 раза;
- б) увеличение 1 100 раз;
- в) увеличение 2 210 раз;г) увеличение 18 400 раз.

После 15 мин и 30 мин механоактивации (рис 5. и рис. 7) частички Pd приобретают некую рыхлую многослойную структуру.

Рисунок 8 – Гистограмма распределения частиц по размерам для механоактивированного в течение 30 минут порошка Pd:

a) тип «обычный»; б) тип «с накоплением»;

в) тип «доля (%)»; г) тип «доля (%) с накоплением»

Статистические данные для порошка Pd после проведения механоактивации в течение 30 минут следующие:

- количество проведенных измерений 910;
- средняя длина частиц 13 мкм;
- минимальная длина частицы 1,09 мкм;
- максимальная длина частицы 83,5 мкм;

- среднее квадратичное отклонение – 9,03 мкм.

Результаты по влиянию механоактивации на распределения частиц порошка Pd по размерам представлены в таблице 1.

Таблица 1

Информация	Кол-во	Средняя	Мин.	Макс.	СКО,
об образце	измерений	длина, мкм	длина, мкм	длина, мкм	МКМ
Исходный	184	603	339	1270	146
6 минут активации	372	299	59,6	814	128
15 минут активации	1000	87,6	4,93	842	59,9
30 минут активации	910	13	1,09	83,5	9,03

Влияние механоактивации на распределение по размерам частиц порошка Pd

Как следует из результатов исследования, механоактивация порошка Pd на используемом оборудовании и при использованных режимах обработки приводит к уменьшению среднего размера частиц более, чем в 2 раза после 6 мин активации, почти в 7 раз после 15 мин активации и более, чем в 46 раз после 30 мин активации.

Удельная поверхность частиц порошка Pd при механоактивации монотонно увеличивается, а среднемассовый размер частиц уменьшается (рис. 9). Величина удельной поверхности частиц после механоактивации в течение 30 мин растет более, чем в 4 раза по сравнению с исходным, а величина среднемассового размера частиц после механоактивации в течение 30 мин уменьшается по сравнению с исходным размером более, чем в 4 раза (рис. 10).

Рисунок 9 – Влияние продолжительности механоактивации порошка Pd на

его удельную поверхность

Рисунок 10 - Зависимость среднего значения среднемассового размера частиц порошка Pd от времени механоактивации

Заключение

Полученные результаты (рис. №№ 1-8) показали, что в процессе механоактивации порошкообразного Pd происходит изменение дисперсности и гранулометрического состава частиц (изменяется форма и положение гистограмм распределения частиц). В несколько раз уменьшается

среднемассовый размер частиц и увеличивается удельная поверхность (рис. №№ 9 и 10). Существенно изменяется и форма, и структура частиц: губкообразные продолговатые частицы неправильной формы преобразуются в плоские дискообразные частицы на первых минутах активации, а далее (после 15 минут обработки) – в плоские многослойные.

Известно, что в процессе механоактивации металлических порошков наряду с измельчением частиц происходит деформация кристаллической пространственная решетки металла, вследствие чего возникает И энергетическая неоднородность поверхности, что приводит к увеличению дефектности и энергонасыщенности за счет пластического деформирования и дробления. Накопленная частичками порошка в процессе механоактивации энергия выделяется в технологическом процессе получения на основе порошка материала путем газопламенного напыления [9], сплавления, спекания как традиционного [10], так и селективного лазерного спекания (плавления) [11, 12, 13], оказывая существенное влияние на свойства конечного продукта.

Основываясь на полученных экспериментальных данных и вышеизложенном, можно заключить, что в нашем случае для частичек Pd при их в 10-50 раз меньшем по сравнению с исходным состоянием размере, в 3-4 раза большем значении удельной поверхности и накопленной вследствие механоактивации энергии, реакция сплавления с металлическим Ba будет происходить существенно эффективнее и быстрее. В результате этого мы должны получить более однородное распределение интерметаллида Pd₅Ba в матрице Pd.

Работа выполнена в НИТУ «МИСиС» в рамках договора № 33/241-13 от 11 ноября 2013 г. на выполнение составной части научноисследовательской и опытно-конструкторской работы «Разработка

технологий создания катодных сплавов на основе щелочноземельных и редкоземельных металлов для мощных электровакуумных СВЧ-приборов», шифр «Электровакуум - МИСиС» (тема №1219111).

Литература

1. Дюбуа Б.Ч., Култашев О.К., Поливникова О.В. Эмиссионная электроника, нанотехнология, синергетика (к истории идей катодной технологии) // "Электронная техника". Серия 1, "СВЧ-техника". 2008. №4. С. 3-22.

2. Дюбуа Б.Ч., Королев А.Н. Современные эффективные катоды. // "Электронная техника". Серия 1, "СВЧ-техника". 2011. №508. С. 5-24.

3. Мясников А.С. Металлоспланые катоды для магнетронов миллиметрового диапазона с торцевой пушкой: дис. канд. техн. наук: 05.27.02. Саратов, 2011. 114 с.

4. Дюбуа Б. Ч., Королёв А. Н. Современные эффективные катоды // Электронная техника, серия 1, СВЧ - техника. 2011. №1. С. 508.

5. Ермилов А.Г., Богатырев Е.В. Предварительная механоактивация // М.: Изд. Дом МИСиС, 2012. С. 135.

6. leicabiosystems.com URL: http://www.leicabiosystems.com/pathologyimaging/aperio-digital-pathology/integrate/imagescope/ (дата обращения: 10.10.2015)..

7. Carman P.C. Flow of Gases throws Porous Media // London: 1956.

 Ходоков Г.С. Метод измерения удельной поверхности высокодисперсных порошков по фильтрации газа. // Коллоидный журнал.
1995. №Т. 57, № 2. С. 280-282.

9. Rusinov P.O., Blednova Zh.M. Surface modification of parts material shape memory TiNiCo with a view to providing a functional and mechanical property as a factor in resource. // Journal of Surface Engineered Materials and Advanced Technology. 2014. No4. pp. 348-358.

10. Витязь П.А., Жорник В.И. Влияние режимов механоактивации на структуру и свойства порошков-прекурсоров системы медь-олово и сплавов, спеченных на их основе. // Вестник Витебского государственного университета. 2014. №26. С. 110-120.

11. Ибрагимова Е.А., Сапрыкин А.А., Бабаева Е.В. Влияние механоактивации порошка на свойства изделий, полученных методом СЛС/П // Перспективные материалы с иерархической структурой для новых технологий и надежных конструкций. Томск: 2015. С. 111-112.

12. Христофорова А.А., Филиппов С.Э., Гоголев И.Н. Разработка жестких покрытий карьерных дорог с применением активированной резиновой крошки // Инженерный вестник Дона. 2013. №3. URL: ivdon.ru/ru/magazine/archive/n4y2011/599

13. Аникеев В. Н., Докукин М.Ю. Экспериментальные исследования режимов получения шероховатых металлических поверхностей в вакуумном дуговом разряде // Инженерный вестник Дона. 2013. №3. URL: ivdon.ru/ru/magazine/archive/n3y2013/1757

References

1. Djubua B.Ch., Kultashev O.K., Polivnikova O.V. "Jelektronnaja tehnika". Serija 1, "SVCh-tehnika" (Rus). 2008. №4. pp. 3-22.

2. Djubua B.Ch., Korolev A.N. "Jelektronnaja tehnika". Serija 1, "SVCh-tehnika" (Rus). 2011. №508 pp. 5-24.

3. Mjasnikov, A, 2011. Metallosplanye katody dlja magnetronov millimetrovogo diapazona s torcevoj pushkoj [Metal Floatable cathodes for magnetrons millimeter range with an end gun]. PhD thesis, Saratovskij gosudarstvennyj tehnicheskij universitet imeni Gagarina Ju.A., Saratov.Kojima, H., 1982. Ferromagnetic Materials, 3: 305-440.

4. Djubua B. Ch., Koroljov A. N. "Jelektronnaja tehnika". Serija 1, "SVCh-tehnika" (Rus). 2011. №1. pp. 508.

5. Ermilov A.G., Bogatyrev E.V. Izd. Dom MISiS (Rus), 2012. pp. 135.

6. leicabiosystems.com. Date Views 10.10.2015 leicabiosystems.com/pathology-imaging/aperio-digitalpathology/integrate/imagescope/.

- 7. Carman P.C. Flow of Gases throws Porous Media. London: 1956.
- 8. Hodokov G.S. Kolloidnyj zhurnal. 1995. №T. 57, № 2. pp. 280-282.

9. Rusinov P.O., Blednova Zh.M. Surface modification of parts material shape memory TiNiCo with a view to providing a functional and mechanical property as a factor in resource. Journal of Surface Engineered Materials and Advanced Technology. 2014. №4. pp. 348-358.

10. Vitjaz' P.A., Zhornik V.I. Vestnik Vitebskogo gosudarstvennogo universiteta. 2014. №26. pp. 110-120.

11. Ibragimova E.A., Saprykin A.A., Babaeva E.V. Perspektivnye materialy s ierarhicheskoj strukturoj dlja novyh tehnologij i nadezhnyh konstrukcij (Rus). Tomsk: 2015. pp. 111-112.

12. Hristoforova A.A., Filippov S.Je., Gogolev I.N. Inzhenernyj vestnik Dona (Rus), 2013, №3. URL: ivdon.ru/ru/magazine/archive/n3y2013/1873.

13. Anikeev V. N., Dokukin M.Ju. Inzhenernyj vestnik Dona (Rus),2013, №3. URL: ivdon.ru/ru/magazine/archive/n3y2013/1873.