Построение диаграммы «напряжения-деформации» бетона в условиях пассивного бокового обжатия

И.В. Резван, Д.Р. Маилян, А.В. Резван

РГСУ (Ростов-на-Дону)

За прошедшее столетие трубобетонные колонны прочно вошли в список наиболее часто используемых видов вертикальных несущих конструкций. Благодаря таким преимуществам как прирост в несущей способности до 35% и более вследствие упрочнения бетонного ядра, обжатого оболочкой, а также отказ от опалубочных и арматурных работ, а соответственно и упрощение процесса бетонирования при отсутствии внутреннего арматурного каркаса, повышение скорости производства работ и снижение издержек многие зарубежные конструкторы склоняются к использованию трубобетонных колонн. В России массовое внедрение этих конструкций сдерживают две проблемы: необходимость компенсации [4,5,6] дилатационного эффекта и высокие деформации вблизи предела несущей способности [1,3,5,6].

Рис. 1. Графики экспериментальных зависимостей напряжений и продольных деформаций для образцов в стальных оболочках, рассеченных на кольца.

В настоящее время отсутствуют аналитические зависимости, позволяющие определять продольные деформации центрально сжатых трубобетонных колонн в зависимости от приложенной нагрузки без использования итерационных методов расчета и ЭВМ [1]. Первым шагом в этом направлении представляется поиск обобщенных зависимостей для построения диаграмм «напряжения – деформации» бетона в условиях пассивного бокового обжатия, когда величина обжатия является исключительно функцией продольного нагружения бетона, масштабного фактора, прочностных и деформативных характеристик материалов. В ходе экспериментальных исследований рассматривалась работа под нагрузкой бетонных цилиндров (ПЦ ТБК8, НЦ ТБК8, НЦ ТБК6, МНЦ ТБК8,), заключенных в обойму из стальных колец с постоянным наружным диаметром D=102мм и пределом текучести R_c =345МПа. Цилидровая прочность бетона на сжатие составляла для ПЦ R_b =62,5МПа, НЦ R_b =50,5МПа, МНЦ R_b =46МПа, толщина стенки колец 6 и 8 мм соответственно.

Рис. 1 иллюстрирует, утверждение о влиянии масштабного фактора, прочностных и деформативных характеристик материалов на деформативность бетона в направлении нагружения. Кроме того, очевидно сходство полученных кривых с криволинейными диаграммами деформаций бетона в условиях одноосного нагружения.

Рис. 2. Графики экспериментальных зависимостей напряжений и продольных деформаций для образцов в стальных обоймах, рассеченных на кольца.

Для удобства дальнейшего анализа данных выполнен переход к относительным величинам таким, как: приведенные нормальные напряжения для рассматриваемых образцов, равные приведенной нагрузке, и приведенные деформации (рис.2):

$$\sigma_a = \frac{\sigma}{\sigma_{max}} = \frac{\sigma}{R_{b,3}} = N_a = \frac{N}{N_{max}} , \qquad (1)$$

$$\varepsilon_a = \frac{\varepsilon}{\varepsilon_{max}} = \frac{\Delta l}{\Delta l_{max}} \ . \tag{2}$$

Аналогично трехлинейной диаграмме состояния сжатого бетона при одноосном напряженном состоянии в соответствие с п. 5.1.18 [7] представляется возможность сформулировать правила построения трехлинейных диаграмм состояния трехосно-сжатого бетона при отсутствии продольных усилий в оболочке, выполняющей исключительно роль обоймы, при различных коэффициентах поперечных деформаций, приводящих к проявлению дилатационного эффекта.

Как видно из рис. 2 при рассмотрении взаимосвязи между величинами приведенных продольных деформаций и напряжений при некотором расхождении кривых на начальных этапах деформирования в точке аналогичной той, что указана в [7]:

$$\sigma_{b1} = 0.6R_{b,3} \tag{3}$$

или
$$\sigma_{a1} = 0.6,$$
 (4)

$$\varepsilon_{a1} = 0,225 \tag{5}$$

кривые образуют единый тренд вплоть до достижения разрушающей нагрузки. Таким образом, данную точку необходимо принять за границу первого и второго участка трехлинейной диаграммы, а точку соответствующую достижению бетоном предела прочности R_{b,3} аналогично рекомендациям для одноосного нагружения за границу второго и третьего участков, т.к. при незначительном превышении предела прочности обжатый бетон будет способен претерпевать значительные необратимые пластические деформации:

$$\sigma_{a0} = 1, \tag{6}$$

$$\varepsilon_{a0} = 1. \tag{7}$$

Для перехода от приведенных единиц к абсолютным или относительным (для деформаций) необходимо ввести понятие начального модуля упругости в условиях бокового обжатия:

$$E_{b,3 \, red} = \frac{0.6R_{b,3}}{0.24\varepsilon_{max}} = 2.5 \frac{R_{b,3}}{\varepsilon_{max}}$$
(8)

Однако, если для одноосного сжатия величину начального модуля упругости можно было упрощенно назначить как

$$E_{b red} = f(R_b), \tag{9}$$

то для трехосного сжатия количество переменных значительно возрастает

$$E_{b,3\,red} = f(R_b, r_b, R_s, t), \tag{10}$$

где *t* — толщина обоймы, *r*_b – радиус бетонного ядра.

По тренду, наблюдаемому по экспериментальным данным, можно предположить, что при постоянных трех из четырех величин переменная оказывает следующее влияние на величину начального модуля упругости:

$$R_b \uparrow \uparrow E_{b,3 \, red} \,, \tag{11}$$

$$t \uparrow \uparrow E_{b,3 red}$$
, (12)

$$R_s \uparrow \uparrow E_{b,3 \ red} , \qquad (13)$$

$$r_b \uparrow \downarrow E_{b,3 \, red} , \qquad (14)$$

Экспериментальное определение величины начального модуля упругости при варьировании указанными факторами в широких приделах позволит построить соответствующую эмпирическую зависимость, что обосновывает актуальность дальнейших исследований в данном направлении. Кроме того, в приведенных координатах представляется возможным построить нелинейную зависимость напряжений и деформаций, позволяющую при известном пределе прочности построить соответствующие диаграммы в абсолютных значениях, экспериментально получив значение деформаций соответствующее любому уровню нагружения $\sigma_a > 0.6$:

$$\sigma_a = \sin(\arccos((1 - \varepsilon_a)^{0.9})), \tag{15}$$

$$e_a = \cos(\arcsin(\sigma_a^{0,9})). \tag{16}$$

Величины начальных модулей упругости для рассмотренных групп образцов и координаты точек трехлинейных диаграмм приведены в табл. 1.

						гаолица г
Группа об- разцов	Е _{b,3 red} , ГПа	$arepsilon_{b1}^{*} * 10^{-5}$ при $arepsilon_{a1}^{} = 0,225$	${{\varepsilon_{b0}}^{*}10^{-}} {{}^{5}}$ при ${\varepsilon_{a0}}=1$	$\varepsilon_{b2}^{*10^{-5}}$ при $\varepsilon_{a2} = 1,3^{*}$	σ _{b1} , МПа при σ _{a1} = 0,6	$\sigma_{b0} = \sigma_{b2},$ МПа при $\sigma_{a0} = \sigma_{a2} = 1$
ПЦ ТБК8	32,09	579,3	2574,8	3347,2	185,92	309,87
нц тбк8	23,05	739,5	3286,5	4272,5	170,43	284,05
НЦ ТБК6	16,04	881,9	3919,7	5095,6	141,47	235,79
МНЦ ТБК8	20,31	788,3	3503,6	4554,7	160,10	266,84

*значение $\varepsilon_{a2} = 1,3$ принято условно для обозначения площадки текучести, приведенные деформации на которой могут быть значительно выше при условии сохранения устойчивости образца и открытых деформационных швах между кольцами обоймы.

В связи с четко выраженной криволинейностью экспериментальных диаграмм состояния неравномерно трехосно сжатого бетона рассмотренных в табл. 1 групп образцов построение двухлинейных диаграмм по рекомендациям [7] представляется нецелесообразным, т.к. это приведет к значительной погрешности при определении деформативности элемента в сторону запаса жесткости в продольном направлении.

Литература

- 1. Кришан А.Л. Трубобетонные колонны с предварительно обжатым ядром: монография Ростов-на-Дону: Рост. гос. строит. ун-т, 2011. 372с.
- 2. Несветаев Г.В., Резван И.В. Оценка прочности трубобетона // Фундаментальные исследования. 2011. №12. С. 580 583.
- 3. Резван И.В. Расчет прочности центрально-сжатых трубобетонных элементов // Современные проблемы науки и образования. 2012. № 1.
- 4. Резван И.В. Самоуплотняющийся высокопрочный напрягающий бетон для трубобетонных колонн // Строительные материалы. – 2012. – № 6. – С. 60 - 62.
- 5. Резван И.В., Маилян Д.Р. Несущая способность бетонного ядра трубобетонных колонн // Вестник Майкопского государственного технологического университета. – 2011. – №3. – С. 18 – 25.
- 6. Резван И.В., Маилян Д.Р., Блягоз А.М. Методика оптимизации сечения центрально-сжатого трубобетонного элемента // Вестник Майкопского государственного технологического университета. – 2011. – №4. – С. 18 – 25.
- 7. СП-52-101-2003 Бетонные и железобетонные конструкции без предварительного напряжения арматуры.